A practical approach to fixed point theory in partial-metric spaces using simulation functions Fixed point theory in partial-metric spaces

Main Article Content

Abderrahmane Boudraa
https://orcid.org/0009-0004-9882-2922
Taieb Hamaizia
https://orcid.org/0000-0002-2388-9127

Abstract

This paper investigates coincidence point results for self-mappings in partial-metric spaces via simulation functions. By introducing a generalized contraction condition involving a simulation function and an auxiliary mapping $H$, we establish sufficient conditions for the existence and uniqueness of coincidence points and common fixed points. Our approach not only unifies several existing fixed point theorems in the literature but also provides a genuine extension by weakening conventional contraction assumptions. The theoretical findings are illustrated by a concrete example in a nonstandard partial-metric space setting, confirming the applicability and effectiveness of the proposed framework. As a special case, our results recover and generalize recent fixed point theorems in both metric and partial-metric spaces.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Boudraa, A. and Hamaizia, T. 2026. A practical approach to fixed point theory in partial-metric spaces using simulation functions: Fixed point theory in partial-metric spaces. Journal of Innovative Applied Mathematics and Computational Sciences. 5, 2 (Jan. 2026), 360–370. DOI:https://doi.org/10.58205/jiamcs.v5i2.1952.
Section
Research Articles

References

[1] M. A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapinar, A note on extended Z-contraction, Mathematics, 8(2) (2020), 195. DOI: 10.3390/math8020195

[2] S. Chandok and S. Radenović, Simulation type functions and coincidence points, Filomat, 32(1) (2018), 141–147. DOI: 10.2298/FIL1801141R

[3] M. Cvetkovic, E. Karapinar and E. Rakocevic, Fixed point results for admissible $mathcal{Z}$‑contraction, Fixed Point Theory, 19(2) (2018), 515–526. DOI: 10.24193/fpt-ro.2018.2.41

[4] I. A. Fulatan and S. S. Mohammed, Fuzzy fixed point results via simulation functions, Mathematical Sciences, 16 (2022), 137–148. DOI: 10.1007/s40096-021-00405-5

[5] E. Karapinar, C.-M. Chen, M. A. Alghamdi and A. Fulga, Advances on the fixed point results via simulation function involving rational terms, Advances in Difference Equations, 2021:409 (2021). DOI: 10.1186/s13662-021-03564-w

[6] D. Kesik, A. Büyükkaya and M. Öztürk, On modified interpolative almost $mathcal{E}$‑type contraction in partial-modular b‑metric spaces, Axioms, 12(7) (2023), 669. DOI: 10.3390/axioms12070669

[7] P. Kumam, D. Gopal and L. Budhia, A new fixed point theorem under Suzuki type $mathcal{Z}$‑contraction mappings, J. Math. Anal., 8(1) (2017), 113–119. DOI: 10.4995/jma.2017.6412

[8] T. Nazir and M. Abbas, Common fixed points of two pairs of mappings satisfying (E.A)‑property in partial-metric spaces, Journal of Inequalities and Applications, 2014:237 (2014). DOI: 10.1186/1029-242X-2014-237

[9] A. Padcharoen, P. Kumam, P. Saipara and P. Chaipunya, Generalized Suzuki type $mathcal{Z}$-contraction in complete metric spaces, Kragujevac J. Mathematics, 42(3) (2018), 419–430. DOI: 10.5937/kgjmath1803419p

[10] S. Radenović, F. Vetro and J. Vujaković, An alternative and easy approach to fixed point results via simulation functions, Demonstratio Mathematica, 50(1) (2017), 223–230. DOI: 10.1515/dema-2017-0022

[11] Y. M. Singh and M. R. Singh, On various types of compatible maps and common fixed point theorems for non‑continuous maps, Hacettepe Journal of Mathematics and Statistics, 40(4) (2011), 503–513. DOI: 10.15672/hujms.7759.101418

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.