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Abstract. This paper investigates coincidence point results for self-mappings in partial-
metric spaces via simulation functions. By introducing a generalized contraction condi-
tion involving a simulation function and an auxiliary mapping H, we establish sufficient
conditions for the existence and uniqueness of coincidence points and common fixed
points. Our approach not only unifies several existing fixed point theorems in the lit-
erature but also provides a genuine extension by weakening conventional contraction
assumptions. The theoretical findings are illustrated by a concrete example in a non-
standard partial-metric space setting, confirming the applicability and effectiveness of
the proposed framework. As a special case, our results recover and generalize recent
fixed point theorems in both metric and partial-metric spaces.
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1 Introduction

Fixed point theory constitutes one of the most dynamic and applicable branches of nonlin-
ear analysis, with its foundations rooted in Banach’s seminal contraction principle from 1922.
Over the decades, this theory has been extensively generalized and refined through various
approaches among which the introduction of simulation functions by Karapinar et al. [1,7,9]
represents a particularly elegant and powerful tool. Simulation functions allow the formula-
tion of weakened contractive conditions, thereby extending the classical Banach theorem to a
wider class of mappings while preserving the essential properties of existence and uniqueness.

Parallel to these developments, the framework of partial-metric spaces, introduced as a gen-
eralization of metric spaces, has attracted considerable attention. In partial-metric spaces, the
self-distance of a point need not be zero, which makes them suitable for modeling problems
in computer science, domain theory, and quantitative semantics where distance may carry a
non-zero intrinsic weight. Numerous examples and applications of partial-metric spaces are
documented in the literature; see, e.g., [5,6]. This flexibility makes partial-metric spaces a
natural setting in which to explore fixed point results under relaxed assumptions.
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Motivated by the interplay between simulation functions and generalized metric struc-
tures, the present paper aims to establish new coincidence and common fixed point theorems
for self-mappings in partial-metric spaces. Specifically, we introduce a generalized contraction
condition involving a simulation function  and an auxiliary mapping H, which substantially
weakens the usual contractive hypotheses and thereby covers a broader spectrum of map-
pings. Our main results not only unify several known theorems in metric and partial-metric
spaces but also offer genuine extensions that highlight the unifying role of simulation func-
tions.

The paper is organized as follows. Section 2 collects the necessary definitions and pre-
liminary results on partial-metric spaces, simulation functions, Cg-simulation functions, and
compatibility notions. In Section 3 we state and prove our main theorems, providing de-
tailed arguments based on Picard-Jungck sequences and various completeness/compatibility
assumptions. An illustrative example is given to demonstrate the applicability of the results.
Finally, Section 4 summarizes the contributions of the work and indicates possible directions
for future research.

2 Preliminaries

The following definitions and preliminaries are required to establish the main results.

Definition 2.1. [5] On a non-empty set X, a function d : X x X — [0, +o0) is called a partial-
metric if it satisfies the following conditions for all v,w,z € X:

(p1) v=wiff d(v,v) =d(v,w) = d(w,w);

(02) d(v,0) < d(v,w);

(p3) d(0,w) = d(w,0);

(pa) d(v,w) < d(v,z) +d(z,w) —d(z,z).

The pair (X, d) is called a partial-metric space.

Definition 2.2. [5] If (X, d) is a partial-metric space and {v,,} is a sequence in X, then:
(P1) {vm} is convergent to a limit v € X, if

lim d(vy,v) =d(v,v).

m——+00

(P2) {vm} is a Cauchy sequence if

lim d (v, v,) exists and is finite.
m,q——+oo

Moreover, we say that the partial-metric space (X, d) is complete if every Cauchy sequence

{vm} in X converges to a point v € X, that is
m’;ﬂwd (Om,vq) = mlirﬁood (vm,v) = d(v,0).

Definition 2.3. [4] A simulation function is a function { : [0, +o0) x [0, +00) — R satisfying
the following conditions:

(gl) C(O, O) =0;

() C(t,s) <s—tforallt,s>0;

(C3) if {tn},{sn} are sequences in (0, +co) such that lim, o t, = lim,_ 1« Sy > 0, then

limsup ¢ (ty,s,) < O.

n—-4o0
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Let Z denote the family of all simulation functions { : [0, +00) x [0, +00) — R. Due to the
axiom ({»), we have {(t,t) < 0 for all t > 0.

Example 2.4. [1] Let ¢; : [0, +00) — [0, +00) be continuous functions with ¢;(t) = 0 iff t = 0,
for i = 1,2. We define the mapping ¢; : [0, +00) x [0, +00) — R by

Z1(t,s) = ¢1(s) — ¢o(t) forall t,s € [0, +0),

where ¢1(f) < t < ¢o(t) for all t > 0.
Then (7 is a simulation function.

Example 2.5. [4] Let f,g : [0,+00) X [0,+0c0) — (0, +00) be two continuous functions with
respect to each variable such that f(t,s) > g(t,s) for all t,s > 0. We define the mapping
{2 :[0,400) x [0, +00) — R by

lo(ts) =s— égzgt for all t,s € [0, +c0),

which is also a simulation function.

Definition 2.6. [2] A function G : [0, +o0) x [0, +00) — R has the property Cg, if there exists
a Cg > 0 such that

(1) G(s,t) > C; implies s > t;

(2) G(t,t) < Cg forall t € [0, +00).

Definition 2.7. [2] A Cg-simulation function is a function { : [0, +o0) x [0, +0) — R satisfy-
ing the following conditions:

(a) For all t,s > 0 we have {(t,s) < G(s,t), where G : [0, +00) X [0, +00) — R is a function
that has the property Cg;

(b) If {t,} and {s,} are sequences in (0, +-c0) such that

im t, = lim s, >0,
n——+400 n——+400

then
limsup ¢ (ty,s,) < Cg.

n—r—+40o0

Let Z¢ be the family of all Cg-simulation functions ¢ : [0, +00) x [0, +00) — R.

Remark 2.8. Each simulation function in the sense of Definition 2.3 is also a Cg-simulation
function as in Definition 2.7, but the converse is not true. Consider the example of the function
G(s,t) = s —t (see [1] for details).

Lemma 2.9. [5] Let (X, d) be a partial-metric space and {v,, } be a sequence in X such that

7111_1}131OO d (Um, Vpms1) = 0.

If limy, g 10 d (U, vg) # O, then there exist € > 0 and two sub-sequences {vy, }, {vg, } of {vm} such

that

kgrfood (Umk'vqk) = kgrfood (vmk' U%H) = kgrfoo d (vmk+1'04k)

= lim d (v v =e€.
k— o0 ( it qk+1)



Fixed point theory in partial-metric spaces 363

For the following, let f and g be self-mappings of a partial-metric space (X, d).

Definition 2.10. [1]If w = fx = gx for some x € X, then x is called a coincidence point of f
and g, and w is called a point of coincidence of f and g.
If also x = w, then x is a common fixed point of f and g.

Definition 2.11. [8] Mappings f and g are called
(i) Compatible if, for every sequence {x,} in X such that {fx,} and {gx,} are convergent
tosome t € X, then

im d (f(gxn), &(fxn)) = d(t,1).

n——4o0

(ii) Non-compatible if there exists at least one sequence {x,} in X such that {fx,} and
{gx,} are convergent to some t € X, but

nlirfmd (f(gxn),8(fxn)) does not exist.
Definition 2.12. [11] The pair (f, g) is weakly compatible if f and g§ commute at their coinci-
dence points, meaning for all x € X such that w = fx = gx we have

g(fx) = f(gx).

Remark 2.13. [11] If a pair (f,g) is compatible, then it is also weakly compatible, but the
converse is not true.

Definition 2.14. [2] A sequence {x,},.n € X is a Picard-Jungck sequence of the pair (f,g)
(based on x¢ € X) if y, = fx, = gxy41 forall m € IN.

Remark 2.15. [10] If we have f(X) C g(X) or g(X) C f(X), then it is certain that a Picard—
Jungck sequence exists for the pair (f, g), but the converse is not true.

Theorem 2.16. [2] Let f and g be weakly compatible self-mappings of a set X. If f and g have a
unique point of coincidence w = fx = gx, then w is a unique common fixed point of f and g.

Definition 2.17. [2] A mapping f is called a (Z¢, g)-contraction if there exists { € Z¢ such
that

¢(d(fx, fy),d(gx,gy)) = Ca, (2.1)

for all x,y € X with gx # gy.
In the case where ¢ = ix (identity mapping on X) and Cg = 0, we get what is called a
Z-contraction (see [3]).

3 Main results

In this section, we establish some results on the existence and uniqueness of common fixed
points using simulation functions in the framework of partial-metric spaces.

Let F denote the family of mappings H : [0, +c0) — [0, +c0) that satisfies the following
conditions

0< H(t) <t forall te (0,4+00)and H(0)=0. (3.1)



364 A. Boudraa, T. Hamaizia

Theorem 3.1. Let (X, d) be a partial-metric space, and let f,g : X — X be self-mappings. Assume
that there exists { € Zg and H € F such that

¢(d(fx, fy), H(d(gx,8y))) > Cg, (3.2)

forall x,y € X with gx # gy.

Assume further that there exists a Picard—Jungck sequence {x, }nen of (f, ). Suppose that at least
one of the following conditions holds:

(i) (g(X),d) is complete and f and g are weakly compatible.

(ii) f(X) C g(X), (f(X),d) is complete and f and g are weakly compatible.

(iii) (X, d) is complete, g is continuous and (f,g) is compatible.

Then f and g have a unique common fixed point.

Proof. First of all, we shall prove that the point of coincidence of f and g is unique (if it exists).
Suppose that z; and z; are distinct points of coincidence of f and g. It follows that there exist
two points v1 and v, (v; # v2) such that fo; = gv; = z1 and fv, = gvy = zp. Then (3.2)
implies

Co < C(d(foy, foa), H(d (g01,8v2))) = { (d (21,22) , H(d (21,22))) < G (H(d (21,22)),d (21, 22)) -
According to Definition 2.6, this would mean that
H(d (21,22)) >d (21,22) ,

which contradicts the defining properties of H, see (3.1).

In order to prove that f and ¢ have a point of coincidence, we take the Picard-Jungck
sequence {xy }neN. According to Definition 2.14 we have y, = fx, = gx,41 for all n € IN.

If yx = Yx41 for some k € N, then gxx1 = Yk = Yk+1 = fxk+1 and f and ¢ have a point
of coincidence. Therefore, suppose that y,, # y,41 for all n € IN. Substituting x = x,1 and
Y = Xp42 in (3.2) we obtain that

Ce <C(d (fxni1, fxns2), H(d (§Xn11,8§%n+2)))
=0 (d (Yns+1,Yn+2)  H(d Yn, Yns1)))
<G (H(d (yn,yn+1)),d (Yn+1,Ynt2)) -

Using Definition 2.6, we have

H(d (Yn,Ynt1)) > d (Ynt1,Ynt2) -

Hence, for all n € IN we get
d (Yn+1,Yn+2) < d (Yn Ynt1) -
Therefore there exists D > 0 such that

lim d (yn,Yns1) =D > 0.

n—-+oo

Suppose that D > 0. Since

d (Ynr1,Yn+2) < H(@d Yn, Ynr1)) < d Y Yni1),
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and both d (y,,11, Yn+2) and d (v, y,+1) tend to D as n — +oo, that would mean that H(d (v4, Yu+1))
also tends to D as n — +oo0.
Using (b) of Definition 2.7, we get

Ce < limsup ¢ (d (Yns1,Ynt2) , H(d (Yn,yn+1))) < Co,

n—-+00

which is a contradiction, hence

im d(yn,Yny1) =D =0. (3.3)

n—r—+4o0

We next show that v, # v,, for n # m.
Indeed, suppose that y, = y, for some n > m. By the definition of the Picard-Jungck
sequence this would mean that

Xmi1 € gil(ym)r
and
X1 €8 (yn) =8 (Ym)-

Then it is possible to choose x,11 = x,41 and also y,11 = y;u+1. Following the previous
arguments, we have

d(Yn, Ynt1) < dYn-1,Yn) < -+ <dUYm, Ym+1) = d Yn,Yn+1),

thus
A (Yn, Yn1) < d Yn, Yng1),

which is a contradiction.
Now, we show that {y,} is a Cauchy sequence. Suppose, on the contrary, that it is not.
Then
lim d (yn,y4) #0.

n,q——+oo
According to (3.3) and Lemma 2.9, this would imply that there exist € > 0 and two sub-
sequences { X, },{xn, } of {x,} such that

kETood(x”k’xmk) = kETood(x”k+l’xmk+l) =¢e>0. (3.4)

Putting x = x;,, 41 and ¥ = x,,, 11 in (3.2) and using Definition 2.7, we obtain

Ce < ¢(d(fxm1, fxm1)  H(d(gXm+1, §Xn4+1)))
= g(d(ymk+1’ yﬂk+1) ’H(d(ymk’y”k))) (3.5)
< G(H(d(ymk/ ynk)) /d(ykarl/ ynk+1)) .

Therefore, using (3.5), (3.4) and (b) from Definition 2.7, we have

Ce < lim sup é (d (ymk+1/ yﬂk+1) ’ d (ymk’ ynk)) < Cg,

n—r—+oo

which is a contradiction, so
lim d (y,y4) = 0.

n,q——+oo

Therefore, the sequence {y,} is a Cauchy sequence.
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Suppose that (i) holds, ie., (g(X),d) is complete. Then there exists v € X such that
gXy, — gv as n — oo, thus

lim d(gxn, gx;) = lim d(gxy, gv) =0. (3.6)

n,q—r—+00 n—r+00

We now prove that fo = gv.
Without loss of generality, we may assume that y, # gv for all n € IN. Therefore, by (3.2)
we have

Ce <C(d(fxu, fv),H(d(gxn,8v))) < G (H(d (gx4,8v)),d (fxn, fv)) forall n € N.
Using Definition 2.6, we get
d(fxn, fo) < H(d (gxn,8v)) < d(gxn,gv) — 0as n — +oo.

It implies that y, = fx, — fv as n — +o0, hence, fv = gv is a unique point of coincidence of
fand g.

Further, since f and g are weakly compatible, then according to Theorem 2.16 the pair
(f,g) has a unique common fixed point.

Now, suppose that (ii) holds. We will use the same proof as condition (i) to conclude that
the sequence {y, } is a Cauchy sequence, and since (f(X), d) is complete, this means that there
exists u € X such that fx, — fu as n — +oo, this implies that

fxp-1— fuasn — oo,

therefore
gxy, — fuasn — +oo.

Since f(X) C g(X), there exists v € X such that
9X, — QU as n — oo.

Consequently, we again arrive at (3.6). Using an argument similar to that employed in case (i),
we conclude that fo = gv, and hence v is the unique coincidence point of f and g.

And since f and g are weakly compatible, according to Theorem 2.16 they have a unique
common fixed point.

Finally, suppose that (iii) holds. Since (X,d) is complete, there exists v € X such that
fx, = vasn — +oo, and

lim d(fxu, fxg) = nngd (fxp,0) =d(v,0) =0.

n,q—+o00

As g is continuous, g (fx,) — gv as n — +oco. Considering (3.2) we get

Co < ¢ (d(f (gxn), fv), H(d (g (gxn),gv))) < G (H(d (g (gxn),80)),d (f (gxn),f0)).

Using Definition 2.6, we have

H(d (g (gxn),8v)) > d (f (gxn), fv),

by continuity of g this means

d(f (gxn), fv) <d(g(8xn),gv) =d (8 (fxn-1),8v) = d(gv,gv) as n — +oo. (3.7)
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As f and g are compatible, we have

d(fo,gv) < d(f(gxu), fo) +d(f (gxn), g (fxn)) +d (g (fxn), gv)
—d (f(gxn), f(gxn)) —d (8 (fxn), & (fxn))
<d(g(fxn-1),80) +d(f (§xn), & (fxn)) +d (g (fxn),8v),

and we have

d (f (gxn), f(8xn)) <24 (f (8xn), g (fxn)) —d (8 (fxn), & (fxn)),

thus
d (f(8xn), f (8xn)) +d (8 (fxn), 8 (fxn)) < 24 (f (8%n), 8 (fxn)), (3.8)
and according to Definition 2.11
Jim d (f (8xn), & (fxu)) = d (v,0) = 0. (3.9)

From (3.8), (3.9) and the continuity of ¢ we conclude

d(gv,gv) = lim d(g(fxu), g (fxn))=0. (3.10)
Then, according to (3.7), (3.9) and (3.10) we get

d(g (fxn-1),80) +d(f (8xn), & (fxn)) +d (g (fxn),gv) = 0+0+0=0asn — +oo.

Hence, d(fv, gv) = 0, that is, the mappings f and g have a unique point of coincidence.
Since f and g are compatible, they are also weakly compatible, so according to Theorem
2.16, f and g have a unique common fixed point. This completes the proof. m|

Remark 3.2. Consider the case where, for each t € X we have d(t,t) = 0.
The main result in [2] is obtained if we consider H = i [0,+00) 1N Theorem 3.1.
Similarly, Theorem 3.1 yields the main result of [10] by choosing C; = 0.

Theorem 3.3. Let us consider the same hypotheses as Theorem 3.1. Suppose that at least one of the
following conditions holds:

(H1) (g(X),d) is complete,

(H2) f(X) C g(X) and (f(X),d) is complete.

Then f and g have a unique point of coincidence.

Proof. The proof of this theorem follows directly from the proof of Theorem 3.1 under condi-
tions (i) and (ii). However, this theorem does not require the compatibility or weak compati-
bility of the pair (f,g). o

Corollary 3.4. Both Theorems 3.1 and 3.3 could be used to show the existence and uniqueness of the
fixed point of a single function f, if we consider that § = ix. It is sufficient to prove that the pair (f, )
has a unique point of coincidence to conclude the existence and uniqueness of the fixed point.

Example 3.5. Let I(]0, +o0)) denote the set of all intervals [a,b] with0 <a <b. Letd : [ x I —
[0, +00) be the function such that

d([a,b],[c,d]) = max(b,d) — min(a,c).

Then (I(]0,+0)),d) is a partial-metric space, because for all [a,b], [c,d], [e, f] € I(][0, +c0)), the
function d satisfies
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* d([a,b],[a,b]) = d([a,b], [c,d]) = d([c,d], [c,d]) <= [a,b] = [c,d],
* d([a,b],[a,b]) < d([a, ], [c,d]),

* d([a, ], [c,d]) = d([c,d], [a,b]),

* d([a,b], [c,d]) < d([a,b],[e, f]) +d(le, f], [c,d]) — d(le, f], [e, f])

The self-distance d([a, b], [a,]) is b — a, the length of the interval [a, b]. Define the mappings
f,8:10,4+00) — [0, +00) by
fx:x—f—%, gx:4x+ez".
In order to solve the nonlinear equation

f(la,b]) = g([a, b]).

Theorem 3.3 can be applied using the following simulation function

{(t,s) = % (s—t) foralls,t € [0,+00),
the function G : [0, +00) x [0, +00) — RR defined by
G(s,t) =s—tforalls,t € [0,+00),
with the constant C; = 0, and the mapping H defined as follows
H(t) =1In(t+1) forall t € [0, +00).

Since f and g are both increasing functions we have that

(£, b)), (i VD), H(d(g([a, 1), ([, V)
= 2 (H(g([a, D), ([, 1)) — d(F([a, b)), £([a, 1))

—_

for all [a,b], [a’, V'] € I(]0,4+0)). Now, we prove that

19—0 <ln(4(max(b, V') —min(a,a’)) + > mXbY) _ p2min(@a’) 4 1y _ max (b, ') + min(a, a’)) > 0.

Set M = max(b, V') and m = min(a,a’). Since M > m > 0, we have
€2M o eZm — eZm(EZ(Mfm) o 1) > eZ(Mfm) —1.

Thus
In(4(M — m) + &M — 2" 4+ 1) > In(4(M — m) + M=),
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Define hx = In(4x + ¢?*) — x for x > 0. A direct computation shows that /’x > 0, hence h
is increasing and 1(0) = 0. Therefore

In(4x +¢**) > x for all x > 0.
Applying this with x = M — m yields
In(4(M—m)+eM—e® +1) > M —m.

Multiplication by 55 completes the proof.
Thus, { satisfies (3.2). Since g(I([0, +o0))) = I([1, +00)), Theorem 3.3 under condition (i)
implies that f and g have a unique point of coincidence.

4 Conclusion

This work has presented new fixed point theorems for self-mappings in partial-metric spaces
through the lens of simulation functions. By introducing a generalized contraction condition
that incorporates both a simulation function { € Zg and an auxiliary mapping H € F, we
have established sufficient criteria for the existence and uniqueness of coincidence points and
common fixed points.

The main contributions of this paper can be summarized as follows:

* A unified framework that extends and generalizes several existing fixed point results in
both metric and partial-metric spaces.

¢ The use of simulation functions to weaken traditional contractive conditions, thereby
covering a broader class of mappings.

¢ The introduction of a Picard-Jungck sequence technique to prove the existence of coin-
cidence points under various completeness and compatibility assumptions.

¢ An illustrative example that validates the applicability of the proposed theorems in a
nonstandard partial-metric space setting, demonstrating the practical relevance of our
theoretical findings.

Our results not only enrich the fixed point theory in generalized metric spaces but also
offer a flexible tool for researchers working in nonlinear analysis, computational mathematics,
and related fields. Future research may explore further extensions, such as applying these
results to coupled or tripled fixed point problems, or adapting the framework to other gener-
alized metric structures such as b-metric, G-metric, or modular metric spaces.
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