An L2-stability analysis of a θ-scheme for a class of nonlinear parabolic variational inequalities of obstacle type L2 Stability of a θ-scheme for parabolic PVIs
Main Article Content
Abstract
This paper analyzes the stability of a fully discrete finite element approximation for a class of nonlinear parabolic variational inequalities of obstacle type. The temporal discretization is based on a θ-scheme. We derive a stability condition for the scheme that depends critically on the parameter θ. We prove that the method is unconditionally stable in the L2-norm for θ in [1/2,1]. For θ in [0,1/2), we establish a precise Courant-Friedrichs-Lewy (CFL)-type condition, Delta t<=2gγ/(L2(1-2θ)), where γ is the coercivity constant and L is the Lipschitz constant of the nonlinear source term. The analysis is based on a careful choice of test functions in the variational inequality and by deriving sharp estimates of the associated bilinear form.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- Authors keep the rights and guarantee the Journal of Innovative Applied Mathematics and Computational Sciences the right to be the first publication of the document, licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License that allows others to share the work with an acknowledgement of authorship and publication in the journal.
- Authors are allowed and encouraged to spread their work through electronic means using personal or institutional websites (institutional open archives, personal websites or professional and academic networks profiles) once the text has been published.
References
[1] Y. Alnashri, A general error estimate for parabolic variational inequalities, Computational Methods in Applied Mathematics, 22(3) (2022), 245–258. DOI: 10.1515/cmam-2021-0050
[2] M. A. Bencheikh Le Hocine, S. Boulaaras, and M. Haiour, An optimal L∞L∞-error estimate for an approximation of a parabolic variational inequality, Numerical Functional Analysis and Optimization, 37(1) (2016), 1–18. DOI: 10.1080/01630563.2015.1109520
[3] A. Bensoussan and J. L. Lions, Problèmes de temps d'arrêt optimal et inéquations variationnelles paraboliques, Applicable Analysis, 3(3) (1973), 267–294. DOI: 10.1080/00036817308839070
[4] A. Bensoussan and J. L. Lions, Applications of Variational Inequalities in Stochastic Control, North-Holland, Amsterdam, 1982.
[5] S. Boulaaras and M. Haiour, The maximum norm analysis of an overlapping Schwarz method for parabolic quasi-variational inequalities related to impulse control problem with mixed boundary conditions, Applied Mathematics and Information Sciences, 7(1) (2013), 343–353. URL
[6] S. Boulaaras, M. A. Bencheikh Le Hocine, and M. Haiour, The finite element approximation in a system of parabolic quasi-variational inequalities related to management of energy production with mixed boundary condition, Computational Mathematics and Modeling, 25(4) (2014), 530–543. DOI: 10.1007/s10598-014-9247-9
[7] M. Boulbrachene, P. Cortey-Dumont, and J. C. Miellou, L∞-error estimate for a class of semilinear elliptic variational inequalities and quasi-variational inequalities, International Journal of Mathematics and Mathematical Sciences, 27(5) (2001), 309–319. DOI: 10.1155/S0161171201010602
[8] M. Boulbrachene, Optimal L∞L∞-error estimate for variational inequalities with nonlinear source terms, Applied Mathematics Letters, 15(8) (2002), 1013–1017. DOI: 10.1016/S0893-9659(02)00078-2
[9] M. Boulbrachene, Pointwise error estimates for a class of elliptic quasi-variational inequalities with nonlinear source terms, Applied Mathematics and Computation, 161(1) (2005), 129–138. DOI: 10.1016/j.amc.2003.12.015
[10] M. Boulbrachene, On the finite element approximation of variational inequalities with noncoercive operators, Numerical Functional Analysis and Optimization, 36(9) (2015), 1107–1121. DOI: 10.1080/01630563.2015.1056913
[11] M. Boulbrachene, M. Haiour, and B. Chentouf, On a noncoercive system of quasi-variational inequalities related to stochastic control problems, Journal of Inequalities in Pure and Applied Mathematics, 3(2) (2002), Article 25. URL
[12] H. Brézis and G. Stampacchia, Sur la régularité de la solution d'inéquation elliptique, Bulletin de la Société Mathématique de France, 96 (1968), 153–180. DOI: 10.24033/bsmf.1663
[13] J. J. Carvajal, D. Damircheli, T. Führer, F. Fuica, and M. Karkulik, A space-time finite element method for parabolic obstacle problems, (2025), preprint. DOI: 10.48550/arXiv.2503.07808
[14] P. Cortey-Dumont, On finite element approximation in the L∞L∞-norm of variational inequalities, Numerische Mathematik, 47 (1985), 45–57. DOI: 10.1007/BF01389875
[15] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
[16] H. Falk, Error estimates for the approximation of a class of variational inequalities, Mathematics of Computation, 28(128) (1974), 963–971. DOI: 10.2307/2005358
[17] A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, Journal of Functional Analysis, 18(2) (1975), 151–176. DOI: 10.1016/0022-1236(75)90022-1
[18] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. URL
[19] T. Gustafsson, Adaptive finite elements for obstacle problems, Advances in Applied Mechanics, 58 (2024), 205–243. DOI: 10.1016/bs.aams.2024.03.004
[20] M. Haiour and E. Hadidi, Uniform convergence of Schwarz method for noncoercive variational inequalities, International Journal of Contemporary Mathematical Sciences, 4(29) (2009), 1423–1434.
[21] W. Han and C. Wang, Numerical analysis of a parabolic hemivariational inequality for semipermeable media, Journal of Computational and Applied Mathematics, 389 (2021), 113326. DOI: 10.1016/j.cam.2020.113326
[22] J. Kacur and R. Van Keer, Solution of degenerate parabolic variational inequalities with convection, ESAIM: Mathematical Modelling and Numerical Analysis, 37(3) (2003), 417–431. DOI: 10.1051/m2an:2003035
[23] J. Li and C. Bi, Study of weak solutions of variational inequality systems with quasilinear degenerate parabolic operators, AIMS Mathematics, 7(11) (2022), 19758–19769. DOI: 10.3934/math.20221083
[24] J. L. Lions and G. Stampacchia, Variational inequalities, Communications on Pure and Applied Mathematics, 20(3) (1967), 493–519. DOI: 10.1002/cpa.3160200302
[25] S. Madi, M. C. Bouras, M. Haiour, and A. Stahel, Pricing of American options using the Brennan–Schwartz algorithm based on finite elements, Applied Mathematics and Computation, 339 (2018), 846–852. DOI: 10.24451/arbor.6773
[26] R. H. Nochetto, K. G. Siebert, and A. Veeser, Theory of adaptive finite element methods: An introduction, in: Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin, 2009, pp. 409–542. DOI: 10.1007/978-3-642-03413-8_12
[27] J. F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam, 1987.
[28] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, Comptes Rendus de l'Académie des Sciences, 258 (1964), 4413–4416.
[29] C. Vuik, An L2-error estimate for an approximation of the solution of a parabolic variational inequality, Numerische Mathematik, 57 (1990), 453–471. DOI: 10.1007/BF01386423