On some properties of k-circulant matrices with the generalized Pell-Padovan numbers

Main Article Content

Yüksel Soykan
https://orcid.org/0000-0002-1895-211X
Erkan Taşdemir
https://orcid.org/0000-0002-5002-3193

Abstract

In this paper, we investigate the properties of the $k$-circulant matrix generated by the generalized Pell--Padovan numbers. We derive explicit formulas for the sum of entries, the maximum column sum norm ($\Vert \cdot \Vert _{1}$), the maximum row sum norm ($\Vert \cdot \Vert_{\infty }$), the Frobenius (Euclidean) norm ($\Vert \cdot \Vert _{F}$), as well as the eigenvalues and determinant of this matrix. Furthermore, we establish upper and lower bounds for its spectral norm ($\Vert \cdot \Vert_{2}$), thereby providing a comprehensive analysis of the structural andspectral characteristics of the $k$-circulant matrix associated with thegeneralized Pell--Padovan sequence.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Soykan, Y. and Taşdemir, E. 2026. On some properties of k-circulant matrices with the generalized Pell-Padovan numbers. Journal of Innovative Applied Mathematics and Computational Sciences. 5, 2 (Jan. 2026), 328–348. DOI:https://doi.org/10.58205/jiamcs.v5i2.1990.
Section
Research Articles

References

References

[1] E. G. Alptekin, Pell, Pell-Lucas ve Modified Pell sayıları ile tanımlı circulant ve semicirculant matrisler, PhD thesis, Selçuk Üniversitesi, 2005.

[2] R. E. Cline, R. J. Plemmons and G. Worm, Generalized inverses of certain Toeplitz matrices, Linear Algebra and its Applications, 8 (1974), 25–33. DOI: 10.1016/0024-3795(74)90004-4

[3] A. Coskun and N. Taskara, On the some properties of circulant matrices with third order linear recurrent sequences, Mathematical Sciences and Applications E-Notes, 6(1) (2018), 12–18. DOI: 10.36753/mathenot.421748

[4] P. J. Davis, Circulant matrices, John Wiley & Sons, New York, 1979.

[5] O. Deveci, On the Fibonacci-circulant p-sequences, Utilitas Mathematica, 108 (2018), 107–124.

[6] O. Deveci, E. Karaduman and C. M. Campbell, The Fibonacci-circulant sequences and their applications, Iranian Journal of Science and Technology, Transactions A: Science, 41(4) (2017), 1033–1038. DOI: 10.1007/s40995-017-0317-7

[7] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.

[8] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd edition, Cambridge University Press, Cambridge, 2012.

[9] Ö. Kisi and İ. Tuzcuoğlu, Fibonacci lacunary statistical convergence in intuitionistic fuzzy n-normed linear space, Annals of Fuzzy Mathematics and Informatics, 20(3) (2020), 207–222. DOI: 10.30948/afmi.2020.20.3.207

[10] Ö. Kisi and P. Debnath, Fibonacci ideal convergence on intuitionistic fuzzy normed linear spaces, Fuzzy Information and Engineering, 14(3) (2022), 255–268. DOI: 10.1080/16168658.2022.2160226

[11] Ö. Kisi, M. Gürdal and S. Çetin, On some properties of Fibonacci almost I-statistical convergence of fuzzy variables in credibility space, Boletim da Sociedade Paranaense de Matemática, 43(2) (2025), 1–14. DOI: 10.5269/bspm.79023

[12] Ö. Kisi, Fibonacci lacunary ideal convergence of double sequences in intuitionistic fuzzy normed linear spaces, Mathematical Sciences and Applications E-Notes, 10(3) (2022), 114–124. DOI: 10.36753/mathenot.931071

[13] A. Özköç and E. Ardıyok, Circulant and negacyclic matrices via Tetranacci numbers, Honam Mathematical Journal, 38(4) (2016), 725–738. DOI: 10.5831/HMJ.2016.38.4.725

[14] A. Pacheenburawana and W. Sintunavarat, On the spectral norms of r-circulant matrices with the Padovan and Perrin sequences, Journal of Mathematical Analysis, 9(3) (2018), 110–122. Link

[15] E. Polatlı, On geometric circulant matrices whose entries are bi-periodic Fibonacci and bi-periodic Lucas numbers, Universal Journal of Mathematics and Applications, 3(3) (2020), 102–108. DOI: 10.32323/ujma.669276

[16] B. Radičić, On k-circulant matrices involving the Jacobsthal numbers, Revista de la Unión Matemática Argentina, 60(2) (2019), 431–442. DOI: 10.33044/revuma.v60n2a10

[17] Z. Raza and M. A. Ali, On the norms of circulant, r-circulant, semi-circulant and Hankel matrices with Tribonacci sequence, arXiv preprint arXiv:1407.1369 (2014). Link

[18] Z. Raza, M. Riaz and M. A. Ali, Some inequalities on the norms of special matrices with generalized Tribonacci and generalized Pell-Padovan sequences, arXiv preprint arXiv:1407.1369 (2015). Link

[19] W. Sintunavarat, The upper bound estimation for the spectral norm of r-circulant and symmetric r-circulant matrices with the Padovan sequence, Journal of Nonlinear Sciences and Applications, 9(1) (2016), 92–101. DOI: 10.22436/jnsa.009.01.09

[20] Y. Soykan, Generalized Pell-Padovan numbers, Asian Journal of Advanced Research and Reports, 11(2) (2020), 8–28. DOI: 10.9734/AJARR/2020/v11i230259

[21] Y. Soykan, *Formulae for the sums of squares of generalized Tribonacci numbers: Closed form formulas of $sum_{k=0}^{n}kV_{k}^{2}$*, IOSR Journal of Mathematics, 16(4) (2020), 1–18. DOI: 10.9790/5728-1604010118

[22] Y. Soykan, A closed formula for the sums of squares of generalized Tribonacci numbers, Journal of Progressive Research in Mathematics, 16(2) (2020), 2932–2941. Link

[23] Y. Soykan, Generalized Tribonacci numbers: Summing formulas, International Journal of Advances in Applied Mathematics and Mechanics, 7(3) (2020), 57–76. Link

[24] Y. Soykan, Summing formulas for generalized Tribonacci numbers, Universal Journal of Mathematics and Applications, 3(1) (2020), 1–11. DOI: 10.32323/ujma.637876

[25] Y. Soykan, *On the sums of squares of generalized Tribonacci numbers: Closed formulas of $sum_{k=0}^{n}x^{k}V_{k}^{2}$*, Archives of Current Research International, 20(4) (2020), 22–47. DOI: 10.9734/ACRI/2020/v20i430187

[26] Y. Soykan, *A study on sum formulas for generalized Tribonacci numbers: Closed forms of the sum formulas $sum_{k=0}^{n}kx^{k}W_{k}$ and $sum_{k=1}^{n}kx^{k}W_{-k}$*, Journal of Progressive Research in Mathematics, 17(1) (2020), 1–40. Link

[27] Y. Soykan, On sum formulas for generalized Tribonacci sequence, Journal of Scientific Research & Reports, 26(7) (2020), 27–52. DOI: 10.9734/JSRR/2020/v26i730283

[28] Y. Soykan, *A study on the sums of squares of generalized Tribonacci numbers: Closed form formulas of $sum_{k=0}^{n}kx^{k}V_{k}^{2}$*, Journal of Scientific Perspectives, 5(1) (2021), 1–23. DOI: 10.26900/jsp.5.1.02

[29] R. Türkmen and H. Gökbaş, On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers, Journal of Inequalities and Applications, 2016(1) (2016), 65. DOI: 10.1186/s13660-016-0997-0

[30] Ş. Uygun, Some bounds for the norms of circulant matrices with the k-Jacobsthal and k-Jacobsthal Lucas numbers, Journal of Mathematics Research, 8(6) (2016), 133–138. DOI: 10.5539/jmr.v8n6p133

[31] Ş. Uygun and S. Yaşamalı, On the bounds for the norms of r-circulant matrices with the Jacobsthal and Jacobsthal–Lucas numbers, International Journal of Pure and Applied Mathematics, 112(1) (2017), 93–102. DOI: 10.12732/ijpam.v112i1.7

[32] Ş. Uygun and S. Yaşamalı, On the bounds for the norms of circulant matrices with the Jacobsthal and Jacobsthal–Lucas numbers, Notes on Number Theory and Discrete Mathematics, 23(1) (2017), 91–98. Link

[33] G. Zielke, Some remarks on matrix norms, condition numbers, and error estimates for linear equations, Linear Algebra and its Applications, 110 (1988), 29–41. DOI: 10.1016/0024-3795(88)90197-2

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.