On some properties of k-circulant matrices with the generalized Pell-Padovan numbers
Main Article Content
Abstract
In this paper, we investigate the properties of the $k$-circulant matrix generated by the generalized Pell--Padovan numbers. We derive explicit formulas for the sum of entries, the maximum column sum norm ($\Vert \cdot \Vert _{1}$), the maximum row sum norm ($\Vert \cdot \Vert_{\infty }$), the Frobenius (Euclidean) norm ($\Vert \cdot \Vert _{F}$), as well as the eigenvalues and determinant of this matrix. Furthermore, we establish upper and lower bounds for its spectral norm ($\Vert \cdot \Vert_{2}$), thereby providing a comprehensive analysis of the structural andspectral characteristics of the $k$-circulant matrix associated with thegeneralized Pell--Padovan sequence.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
- Authors keep the rights and guarantee the Journal of Innovative Applied Mathematics and Computational Sciences the right to be the first publication of the document, licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License that allows others to share the work with an acknowledgement of authorship and publication in the journal.
- Authors are allowed and encouraged to spread their work through electronic means using personal or institutional websites (institutional open archives, personal websites or professional and academic networks profiles) once the text has been published.
References
References
[1] E. G. Alptekin, Pell, Pell-Lucas ve Modified Pell sayıları ile tanımlı circulant ve semicirculant matrisler, PhD thesis, Selçuk Üniversitesi, 2005.
[2] R. E. Cline, R. J. Plemmons and G. Worm, Generalized inverses of certain Toeplitz matrices, Linear Algebra and its Applications, 8 (1974), 25–33. DOI: 10.1016/0024-3795(74)90004-4
[3] A. Coskun and N. Taskara, On the some properties of circulant matrices with third order linear recurrent sequences, Mathematical Sciences and Applications E-Notes, 6(1) (2018), 12–18. DOI: 10.36753/mathenot.421748
[4] P. J. Davis, Circulant matrices, John Wiley & Sons, New York, 1979.
[5] O. Deveci, On the Fibonacci-circulant p-sequences, Utilitas Mathematica, 108 (2018), 107–124.
[6] O. Deveci, E. Karaduman and C. M. Campbell, The Fibonacci-circulant sequences and their applications, Iranian Journal of Science and Technology, Transactions A: Science, 41(4) (2017), 1033–1038. DOI: 10.1007/s40995-017-0317-7
[7] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
[8] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd edition, Cambridge University Press, Cambridge, 2012.
[9] Ö. Kisi and İ. Tuzcuoğlu, Fibonacci lacunary statistical convergence in intuitionistic fuzzy n-normed linear space, Annals of Fuzzy Mathematics and Informatics, 20(3) (2020), 207–222. DOI: 10.30948/afmi.2020.20.3.207
[10] Ö. Kisi and P. Debnath, Fibonacci ideal convergence on intuitionistic fuzzy normed linear spaces, Fuzzy Information and Engineering, 14(3) (2022), 255–268. DOI: 10.1080/16168658.2022.2160226
[11] Ö. Kisi, M. Gürdal and S. Çetin, On some properties of Fibonacci almost I-statistical convergence of fuzzy variables in credibility space, Boletim da Sociedade Paranaense de Matemática, 43(2) (2025), 1–14. DOI: 10.5269/bspm.79023
[12] Ö. Kisi, Fibonacci lacunary ideal convergence of double sequences in intuitionistic fuzzy normed linear spaces, Mathematical Sciences and Applications E-Notes, 10(3) (2022), 114–124. DOI: 10.36753/mathenot.931071
[13] A. Özköç and E. Ardıyok, Circulant and negacyclic matrices via Tetranacci numbers, Honam Mathematical Journal, 38(4) (2016), 725–738. DOI: 10.5831/HMJ.2016.38.4.725
[14] A. Pacheenburawana and W. Sintunavarat, On the spectral norms of r-circulant matrices with the Padovan and Perrin sequences, Journal of Mathematical Analysis, 9(3) (2018), 110–122. Link
[15] E. Polatlı, On geometric circulant matrices whose entries are bi-periodic Fibonacci and bi-periodic Lucas numbers, Universal Journal of Mathematics and Applications, 3(3) (2020), 102–108. DOI: 10.32323/ujma.669276
[16] B. Radičić, On k-circulant matrices involving the Jacobsthal numbers, Revista de la Unión Matemática Argentina, 60(2) (2019), 431–442. DOI: 10.33044/revuma.v60n2a10
[17] Z. Raza and M. A. Ali, On the norms of circulant, r-circulant, semi-circulant and Hankel matrices with Tribonacci sequence, arXiv preprint arXiv:1407.1369 (2014). Link
[18] Z. Raza, M. Riaz and M. A. Ali, Some inequalities on the norms of special matrices with generalized Tribonacci and generalized Pell-Padovan sequences, arXiv preprint arXiv:1407.1369 (2015). Link
[19] W. Sintunavarat, The upper bound estimation for the spectral norm of r-circulant and symmetric r-circulant matrices with the Padovan sequence, Journal of Nonlinear Sciences and Applications, 9(1) (2016), 92–101. DOI: 10.22436/jnsa.009.01.09
[20] Y. Soykan, Generalized Pell-Padovan numbers, Asian Journal of Advanced Research and Reports, 11(2) (2020), 8–28. DOI: 10.9734/AJARR/2020/v11i230259
[21] Y. Soykan, *Formulae for the sums of squares of generalized Tribonacci numbers: Closed form formulas of $sum_{k=0}^{n}kV_{k}^{2}$*, IOSR Journal of Mathematics, 16(4) (2020), 1–18. DOI: 10.9790/5728-1604010118
[22] Y. Soykan, A closed formula for the sums of squares of generalized Tribonacci numbers, Journal of Progressive Research in Mathematics, 16(2) (2020), 2932–2941. Link
[23] Y. Soykan, Generalized Tribonacci numbers: Summing formulas, International Journal of Advances in Applied Mathematics and Mechanics, 7(3) (2020), 57–76. Link
[24] Y. Soykan, Summing formulas for generalized Tribonacci numbers, Universal Journal of Mathematics and Applications, 3(1) (2020), 1–11. DOI: 10.32323/ujma.637876
[25] Y. Soykan, *On the sums of squares of generalized Tribonacci numbers: Closed formulas of $sum_{k=0}^{n}x^{k}V_{k}^{2}$*, Archives of Current Research International, 20(4) (2020), 22–47. DOI: 10.9734/ACRI/2020/v20i430187
[26] Y. Soykan, *A study on sum formulas for generalized Tribonacci numbers: Closed forms of the sum formulas $sum_{k=0}^{n}kx^{k}W_{k}$ and $sum_{k=1}^{n}kx^{k}W_{-k}$*, Journal of Progressive Research in Mathematics, 17(1) (2020), 1–40. Link
[27] Y. Soykan, On sum formulas for generalized Tribonacci sequence, Journal of Scientific Research & Reports, 26(7) (2020), 27–52. DOI: 10.9734/JSRR/2020/v26i730283
[28] Y. Soykan, *A study on the sums of squares of generalized Tribonacci numbers: Closed form formulas of $sum_{k=0}^{n}kx^{k}V_{k}^{2}$*, Journal of Scientific Perspectives, 5(1) (2021), 1–23. DOI: 10.26900/jsp.5.1.02
[29] R. Türkmen and H. Gökbaş, On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers, Journal of Inequalities and Applications, 2016(1) (2016), 65. DOI: 10.1186/s13660-016-0997-0
[30] Ş. Uygun, Some bounds for the norms of circulant matrices with the k-Jacobsthal and k-Jacobsthal Lucas numbers, Journal of Mathematics Research, 8(6) (2016), 133–138. DOI: 10.5539/jmr.v8n6p133
[31] Ş. Uygun and S. Yaşamalı, On the bounds for the norms of r-circulant matrices with the Jacobsthal and Jacobsthal–Lucas numbers, International Journal of Pure and Applied Mathematics, 112(1) (2017), 93–102. DOI: 10.12732/ijpam.v112i1.7
[32] Ş. Uygun and S. Yaşamalı, On the bounds for the norms of circulant matrices with the Jacobsthal and Jacobsthal–Lucas numbers, Notes on Number Theory and Discrete Mathematics, 23(1) (2017), 91–98. Link
[33] G. Zielke, Some remarks on matrix norms, condition numbers, and error estimates for linear equations, Linear Algebra and its Applications, 110 (1988), 29–41. DOI: 10.1016/0024-3795(88)90197-2