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1Department of Mathematics, Faculty of Science, Zonguldak Bülent Ecevit University, Zonguldak,
Türkiye

2Pınarhisar Vocational School, Kırklareli University, Kırklareli, Türkiye

Received September 10, 2025, Accepted December 27, 2025, Published January 08, 2026

Abstract. In this paper, we investigate the properties of the k-circulant matrix generated
by the generalized Pell–Padovan numbers. We derive explicit formulas for the sum of
entries, the maximum column sum norm (∥ · ∥1), the maximum row sum norm (∥ · ∥∞),
the Frobenius (Euclidean) norm (∥ · ∥F), as well as the eigenvalues and determinant
of this matrix. Furthermore, we establish upper and lower bounds for its spectral
norm (∥ · ∥2), thereby providing a comprehensive analysis of the structural and spectral
characteristics of the k-circulant matrix associated with the generalized Pell–Padovan
sequence.
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1 Introduction

First, we recall definitions and some properties of the generalized Pell-Padovan sequence.
A generalized Pell-Padovan sequence {Vn}n≥0 = {Vn(V0, V1, V2)}n≥0 is defined by the third-
order recurrence relations

Vn = 2Vn−2 + Vn−3, (1.1)

with initial values V0 = c0, V1 = c1, V2 = c2, not all zero, where c0, c1, c2 are real or complex
numbers.

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −2V−(n−1) + V−(n−3),

for n = 1, 2, 3, . . . Hence, recurrence (1.1) holds for all integers n.
The Binet formula for the generalized Pell-Padovan numbers can be given as

Vn =
b1αn

(α − β)(α − γ)
+

b2βn

(β − α)(β − γ)
+

b3γn

(γ − α)(γ − β)
,
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where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α + γ)V1 + αγV0, b3 = V2 − (α + β)V1 + αβV0.
(1.2)

Here, α, β, and γ are the roots of the cubic equation x3 − 2x − 1 = 0. Moreover,

α =
1 +

√
5

2
,

β =
1 −

√
5

2
,

γ = −1.

Note that

α + β + γ = 0,

αβ + αγ + βγ = −2,

αβγ = 1.

Now we define four special cases of the sequence {Vn}. The Pell-Padovan sequence {Rn}n≥0,
the Pell-Perrin sequence {Cn}n≥0, third-order Fibonacci-Pell sequence {Gn}n≥0, and third-
order Lucas-Pell sequence {Bn}n≥0 are defined, respectively, by the third-order recurrence
relations

Rn+3 = 2Rn+1 + Rn, R0 = 1, R1 = 1, R2 = 1,

Cn+3 = 2Cn+1 + Cn, C0 = 3, C1 = 0, C2 = 2,

Gn+3 = 2Gn+1 + Gn, G0 = 1, G1 = 0, G2 = 2,

Bn+3 = 2Bn+1 + Bn, B0 = 3, B1 = 0, B2 = 4.

The sequences {Rn}n≥0, {Cn}n≥0, {Gn}n≥0 and {Bn}n≥0 can be extended to negative sub-
scripts by defining

R−n = −2R−(n−1) + R−(n−3),

C−n = −2C−(n−1) + C−(n−3),

G−n = −2G−(n−1) + G−(n−3),

B−n = −2B−(n−1) + B−(n−3),

for n = 1, 2, 3, . . . respectively.
For more information on the Pell-Padovan sequence, see Soykan [20].
Theorem 1.1 gives a sum formula for generalized Pell-Padovan numbers.

Theorem 1.1. Let x be a nonzero real or complex number. For n ≥ 0, we have the following formula:
If x3 + 2x2 − 1 , 0, then

n

∑
k=0

xkVk =
Θ1(x)
Θ(x)

.

where Θ1(x) = xn+3Vn+3 + xn+2Vn+2 − (2x2 − 1)xn+1Vn+1 − x2V2 − xV1 +(2x2 − 1)V0, Θ(x) =
x3 + 2x2 − 1.

Proof. This result follows directly from Theorem 2.1 (a) of [23] by setting the recurrence pa-
rameters to r = 0, s = 2, t = 1. □
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Theorem 1.2 shows sum formulas for generalized Pell-Padovan numbers.

Theorem 1.2. For n ≥ 0, we have the following formulas:

(a) ∑n
i=0 Vi =

1
2 (Vn+3 + Vn+2 − Vn+1 − V2 − V1 + V0) =

Θ1

Θ
.

(b) ∑n
i=0 iVi =

1
4 ((2n − 1)Vn+3 + (2n − 3)Vn+2 − (2n + 3)Vn+1 + 3V2 + 5V1 + V0) =

Ψ1

Ψ
.

(c) ∑n
i=0 V2

i = 1
2 ((2n + 11)V2

n+3 +(2n + 9)V2
n+2 +(2n + 11)V2

n+1 − 4 (n + 5)Vn+3Vn+2 − 4 (n + 6)Vn+3Vn+1 +

4 (n + 6)Vn+2Vn+1 − 9V2
2 − 7V2

1 − 9V2
0 + 16V2V1 + 20V2V0 − 20V1V0) =

∆1

∆
.

(d) ∑n
i=0 iV2

i = 1
4 ((2n2 + 18n + 69)V2

n+3 + (2n2 + 14n + 53)V2
n+2 + (2n2 + 18n + 85)V2

n+1 −
4(n2 + 8n+ 31)Vn+3Vn+2 − 4(n2 + 10n+ 40)Vn+3Vn+1 + 4(n2 + 10n+ 38)Vn+2Vn+1 − 53V2

2 −
41V2

1 − 69V2
0 − 116V1V0 + 124V2V0 + 96V2V1) =

Ω1

Ω
.

Proof. (a) Take x = 1, r = 0, s = 2, t = 1 in [23], Theorem 2.1 (a) or take r = 0, s = 2, t = 1
in [24], Theorem 2.1 (a).

(b) Take x = 1, r = 0, s = 2, t = 1 in [26], Theorem 2.1 (a) or take r = 0, s = 2, t = 1 in [27],
Theorem 2.1 (a).

(c) Take x = 1, r = 0, s = 2, t = 1 in [25], Theorem 3.1 (a) and use L’Hospital’s rule, see [25],
Theorem 4.2.

(d) Take x = 1, r = 0, s = 2, t = 1 in [28], Theorem 2.1 (a) and use L’Hospital’s rule, see [28],
Theorem 3.1.

□

Using the recurrence relation Vn+3 = 2Vn+1 + Vn, we can write Theorem 1.2 as follows.

Theorem 1.3. For n ≥ 0, we have the following formulas:

(a) ∑n
i=0 Vi =

1
2 (Vn+2 + Vn+1 + Vn − V2 − V1 + V0) =

Θ1

Θ
.

(b) ∑n
i=0 iVi =

1
4 ((2n − 3)Vn+2 + (2n − 5)Vn+1 + (2n − 1)Vn + 3V2 + 5V1 + V0) =

Ψ1

Ψ
.

(c) ∑n
i=0 V2

i = 1
2 ((2n+ 9)V2

n+2 +(2n+ 7)V2
n+1 +(2n+ 11)V2

n − 4(n+ 4)Vn+2Vn+1 − 4(n+ 5)Vn+2Vn +

4(n + 5)Vn+1Vn − 9V2
2 − 7V2

1 − 9V2
0 + 16V2V1 + 20V2V0 − 20V1V0) =

∆1

∆
.

(d) ∑n
i=0 iV2

i = 1
4 ((2n2 + 14n + 53)V2

n+2 + (2n2 + 10n + 41)V2
n+1 + (2n2 + 18n + 69)V2

n − 4(n2 +

6n + 24)Vn+2Vn+1 − 4(n2 + 8n + 31)Vn+2Vn + 4(n2 + 8n + 29)Vn+1Vn − 53V2
2 − 41V2

1 −

69V2
0 − 116V1V0 + 124V2V0 + 96V2V1) =

Ω1

Ω
.

From Theorem 1.3, we obtain the following corollary, which gives sum formulas for Pell-
Padovan numbers (take Vn = Rn with R0 = 1, R1 = 1, R2 = 1).

Corollary 1.4. For n ≥ 0, Pell-Padovan numbers have the following properties:
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(a) ∑n
i=0 Ri =

1
2 (Rn+2 + Rn+1 + Rn − 1).

(b) ∑n
i=0 iRi =

1
4 ((2n − 3)Rn+2 + (2n − 5)Rn+1 + (2n − 1)Rn + 9).

(c) ∑n
i=0 R2

i = 1
2 ((2n + 9)R2

n+2 + (2n + 7)R2
n+1 + (2n + 11)R2

n − 4(n + 4)Rn+2Rn+1 − 4(n +

5)Rn+2Rn + 4(n + 5)Rn+1Rn − 9).

(d) ∑n
i=0 iR2

i = 1
4 ((2n2 + 14n + 53)R2

n+2 + (2n2 + 10n + 41)R2
n+1 + (2n2 + 18n + 69)R2

n − 4(n2 +

6n + 24)Rn+2Rn+1 − 4(n2 + 8n + 31)Rn+2Rn + 4(n2 + 8n + 29)Rn+1Rn − 59).

Taking Vn = Cn with C0 = 3, C1 = 0, C2 = 2 in Theorem 1.3, we get the following corollary,
which gives sum formulas for Pell-Perrin numbers.

Corollary 1.5. For n ≥ 0, Pell-Perrin numbers have the following properties:

(a) ∑n
i=0 Ci =

1
2 (Cn+2 + Cn+1 + Cn + 1).

(b) ∑n
i=0 iCi =

1
4 ((2n − 3)Cn+2 + (2n − 5)Cn+1 + (2n − 1)Cn + 9).

(c) ∑n
i=0 C2

i = 1
2 ((2n+ 9)C2

n+2 +(2n+ 7)C2
n+1 +(2n+ 11)C2

n − 4(n+ 4)Cn+2Cn+1 − 4(n+ 5)Cn+2Cn +

4(n + 5)Cn+1Cn + 3).

(d) ∑n
i=0 iC2

i = 1
4 ((2n2 + 14n + 53)C2

n+2 + (2n2 + 10n + 41)C2
n+1 + (2n2 + 18n + 69)C2

n − 4(n2 +

6n + 24)Cn+2Cn+1 − 4(n2 + 8n + 31)Cn+2Cn + 4(n2 + 8n + 29)Cn+1Cn − 89).

From Theorem 1.3, we have the following corollary, which presents sum formulas for
third-order Fibonacci-Pell numbers (take Vn = Gn with G0 = 1, G1 = 0, G2 = 2).

Corollary 1.6. For n ≥ 0, third-order Fibonacci-Pell numbers have the following properties:

(a) ∑n
i=0 Gi =

1
2 (Gn+2 + Gn+1 + Gn − 1).

(b) ∑n
i=0 iGi =

1
4 ((2n − 3)Gn+2 + (2n − 5)Gn+1 + (2n − 1)Gn + 7).

(c) ∑n
i=0 G2

i = 1
2 ((2n + 9)G2

n+2 + (2n + 7)G2
n+1 + (2n + 11)G2

n − 4(n + 4)Gn+2Gn+1 − 4(n +

5)Gn+2Gn + 4(n + 5)Gn+1Gn − 5).

(d) ∑n
i=0 iG2

i = 1
4 ((2n2 + 14n+ 53)G2

n+2 + (2n2 + 10n+ 41)G2
n+1 + (2n2 + 18n+ 69)G2

n − 4(n2 +

6n + 24)Gn+2Gn+1 − 4(n2 + 8n + 31)Gn+2Gn + 4(n2 + 8n + 29)Gn+1Gn − 33).

Taking Vn = Bn with B0 = 3, B1 = 0, B2 = 4 in Theorem 1.3, we obtain the following
corollary, which shows sum formulas for third-order Lucas-Pell numbers.

Corollary 1.7. For n ≥ 0, third-order Lucas-Pell numbers have the following properties:

(a) ∑n
i=0 Bi =

1
2 (Bn+2 + Bn+1 + Bn − 1).

(b) ∑n
i=0 iBi =

1
4 ((2n − 3)Bn+2 + (2n − 5)Bn+1 + (2n − 1)Bn + 15).

(c) ∑n
i=0 B2

i = 1
2 ((2n+ 9)B2

n+2 +(2n+ 7)B2
n+1 +(2n+ 11)B2

n − 4(n+ 4)Bn+2Bn+1 − 4(n+ 5)Bn+2Bn +

4(n + 5)Bn+1Bn + 15).

(d) ∑n
i=0 iB2

i = 1
4 ((2n2 + 14n + 53)B2

n+2 + (2n2 + 10n + 41)B2
n+1 + (2n2 + 18n + 69)B2

n − 4(n2 +

6n + 24)Bn+2Bn+1 − 4(n2 + 8n + 31)Bn+2Bn + 4(n2 + 8n + 29)Bn+1Bn + 19).
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2 Main results

In this section, we recall some information on k-circulant matrices, Frobenius norm, spectral
norm, maximum column Euclidean norm, and maximum row Euclidean norm. Let n ≥ 2 be
an integer and k be any real or complex number. An n × n matrix Ck =

(
cij
)
∈ Mn×n(C) is

called a k-circulant matrix if it is of the form

Ck =



c0 c1 c2 · · · cn−2 cn−1

kcn−1 c0 c1 · · · cn−3 cn−2

kcn−2 kcn−1 c0 · · · cn−4 cn−3
...

...
...

. . .
...

...
kc2 kc3 kc4 · · · c0 c1

kc1 kc2 kc3 · · · kcn−1 c0


n×n

.

The k-circulant matrix Ck is denoted by Ck = Circk(c0, c1, . . . , cn−1).
If k = 1, then the 1-circulant matrix is called a circulant matrix and is denoted by C =

Circ(c0, c1, . . . , cn−1). The circulant matrix was first proposed by Davis in [4].
The Frobenius (or Euclidean) norm and spectral norm of an m × n matrix A = (aij)m×n ∈

Mm×n(C) are defined respectively as follows:

∥A∥F =

(
m

∑
i=1

n

∑
j=1

∣∣aij
∣∣2)1/2

and ∥A∥2 =

(
max
1≤i≤n

|λi(A∗A)|
)1/2

,

where λi(A∗A) are the eigenvalues of the matrix A∗A and A∗ is the conjugate transpose of the
matrix A. The following inequality holds for any matrix A = (aij)n×n ∈ Mn×n(C) (see [33],
Theorem 1 and Table 1):

1√
n
∥A∥F ≤ ∥A∥2 ≤ ∥A∥F . (2.1)

Hence
∥A∥2 ≤ ∥A∥F ≤

√
n ∥A∥2 .

In the literature, there are other types of matrix norms. The maximum column sum matrix
norm of an n × n matrix A =

(
aij
)

is ∥A∥1 = max
1≤j≤n

∑n
i=1
∣∣aij
∣∣, and the maximum row sum

matrix norm is ∥A∥∞ = max
1≤i≤n

∑n
j=1
∣∣aij
∣∣. The maximum column length norm c1(A) and the

maximum row length norm r1(A) of an m × n matrix A =
(
aij
)

are defined as follows:

c1(A) = max
1≤j≤n

(
n

∑
i=1

∣∣aij
∣∣2)1/2

and r1(A) = max
1≤i≤n

(
n

∑
j=1

∣∣aij
∣∣2)1/2

.

There is a relation between ∥·∥2, c1(·), and r1(·) norms as follows:

Lemma 2.1. [7] For any matrices A = (aij)m×n ∈ Mm×n(C) and B = (bij)m×n ∈ Mm×n(C), we
have

∥A ◦ B∥2 ≤ r1(A)c1(B).

and
∥A ◦ B∥2 ≤ ∥A∥2 ∥B∥2 .
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and
∥A ⊗ B∥2 = ∥A∥2 ∥B∥2 .

where A ◦ B is the Hadamard product, defined by

A ◦ B = (aijbij),

and A ⊗ B is the Kronecker product, defined by

A ⊗ B = (aijB).

For more details on matrix norms, see, for example, [8]. In the following Table 1, we
present a few special studies on the Frobenius norm, spectral norm, maximum column length
norm, and maximum row length norm of circulant (k-circulant, geometric circulant, semicircu-
lant) matrices with the generalized m-step Fibonacci sequences, which require sum formulas
of second powers of numbers in m-step Fibonacci sequences (m = 2, 3, 4).

Table 1. Related works on norms of circulant-type matrices with sequences.
Name of sequence Papers

second order↓ second order↓
Fibonacci, Lucas [5, 6, 15]
Pell, Pell-Lucas [1, 29]

Jacobsthal, Jacobsthal-Lucas [16, 30–32]
third order↓ third order↓

Tribonacci, Tribonacci-Lucas [17, 18]
Padovan, Perrin [3, 14, 19]

fourth order↓ fourth order↓
Tetranacci, Tetranacci-Lucas [13]

Here, we need the following two lemmas for our calculations.

Lemma 2.2. [ [2], Lemma 4] Let Ck = Circk(c0, c1, . . . , cn−1) be an n × n k-circulant matrix. Then
we have

λj(Ck) =
n−1

∑
p=0

k
p
n ω−jpcp =

n−1

∑
p=0

(
k

1
n ω−j

)p
cp,

where ω = exp(2πi/n) = e
2πi
n , j = 0, 1, 2, . . . , n − 1. Moreover, in this case

cp =
1
n

n−1

∑
j=0

(
k

1
n ω−j

)−p
λj(Ck), p = 0, 1, 2, . . . , n − 1,

where k
1
n denotes the principal nth root.

Lemma 2.3. [8] Let A be an n × n matrix with eigenvalues λ1, λ2, λ3, . . . , λn. Then, A is a nor-
mal matrix if and only if the eigenvalues of AA∗ are |λ1|2 , |λ2|2 , |λ3|2 , . . . , |λn|2, where A∗ is the
conjugate transpose of the matrix A.

We now define the k-circulant matrix with generalized Pell-Padovan number entries. Through-
out this paper, the k-circulant matrix, whose entries are the generalized Pell-Padovan numbers,
will be denoted by Cn(V)k = Circk(V0, V1, . . . , Vn−1).
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Definition 2.4. An n × n k-circulant matrix with generalized Pell-Padovan number entries is
defined by

Cn(V)k = Circk(V0, V1, . . . , Vn−1) =


V0 V1 V2 · · · Vn−2 Vn−1

kVn−1 V0 V1 · · · Vn−3 Vn−2

kVn−2 kVn−1 V0 · · · Vn−4 Vn−3
...

...
...

...
...

kV1 kV2 kV3 · · · kVn−1 V0


n×n

. (2.2)

We call this matrix the generalized Pell-Padovan k-circulant matrix. We handle two special
cases of the generalized Pell-Padovan k-circulant matrix, namely the Pell-Padovan k-circulant
matrix: Cn(R)k = Circk(R0, R1, . . . , Rn−1), the Pell-Perrin k-circulant matrix: Cn(C)k = Circk(C0, C1, . . . , Cn−1),
the third-order Fibonacci-Pell k-circulant matrix: Cn(G)k = Circk(G0, G1, . . . , Gn−1), and the
third-order Lucas-Pell k-circulant matrix: Cn(B)k = Circk(B0, B1, . . . , Bn−1).

Now, we denote the sum of entries of Cn(V)k as S(Cn(V)k).

Lemma 2.5. The sum of entries of Cn(V)k is
S(Cn(V)k) = 1

4 ((2kn − 3k + 3)Vn+2 + (2kn − 5k + 5)Vn+1 − (k + 2kn − 1)Vn + (3k − 2n −
3)V2 + (5k − 2n − 5)V1 + (2n + k − 1)V0).

Proof. From the definition of Cn(V)k, using Theorem 1.3, we obtain

S(Cn(V)k) = nV0 + ((n − 1) + k)V1 + ((n − 2) + 2k)V2 + · · ·+ (1 + (n − 1)k)Vn−1

=
n−1

∑
i=0

(n − i)Vi + k
n−1

∑
i=1

iVi

= n
n−1

∑
i=0

Vi + (k − 1)
n−1

∑
i=1

iVi

=
1
4
((2kn − 3k + 3)Vn+2 + (2kn − 5k + 5)Vn+1 − (k + 2kn − 1)Vn

+(3k − 2n − 3)V2 + (5k − 2n − 5)V1 + (2n + k − 1)V0).

□

Taking Vn = Rn with R0 = 1, R1 = 1, R2 = 1, Vn = Cn with C0 = 3, C1 = 0, C2 = 2, Vn = Gn

with G0 = 1, G1 = 0, G2 = 2, and Vn = Bn with B0 = 3, B1 = 0, B2 = 4, respectively, in the last
lemma, we obtain the following corollary.

Corollary 2.6. We have the following results:

(a) The sum of entries of Cn(R)k is

S(Cn(R)k) =
1
4 ((2kn − 3k + 3)Rn+2 + (2kn − 5k + 5)Rn+1 − (k + 2kn − 1)Rn + (9k − 2n −

9)).

(b) The sum of entries of Cn(C)k is

S(Cn(C)k) =
1
4 ((2kn − 3k + 3)Cn+2 + (2kn − 5k + 5)Cn+1 − (k + 2kn − 1)Cn + (9k + 2n −

9)).

(c) The sum of entries of Cn(G)k is

S(Cn(G)k) =
1
4 ((2kn − 3k + 3)Gn+2 + (2kn − 5k + 5)Gn+1 − (k + 2kn − 1)Gn + (7k − 2n −

7)).
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(d) The sum of entries of Cn(B)k is

S(Cn(B)k) =
1
4 ((2kn − 3k + 3)Bn+2 + (2kn − 5k + 5)Bn+1 − (k + 2kn − 1)Bn + (15k − 2n −

15)).

Next, we give the maximum column sum matrix norm ∥Cn(V)k∥1 and the maximum row
sum matrix norm ∥Cn(V)k∥∞ of the matrix Cn(V)k =

(
cij
)

under certain conditions on the
generalized Pell-Padovan sequence Vn and k.

Theorem 2.7. Assume Vp ≥ 0 for all nonnegative integers p. Then we have the following formulas:
If k ≥ 1, then

∥Cn(V)k∥1 = ∥Cn(V)k∥∞ =
1
2
(kVn+2 + kVn+1 − kVn − kV2 − kV1 + (2 − k)V0),

and if k < 1, then

∥Cn(V)k∥1 = ∥Cn(V)k∥∞ =
1
2
(Vn+2 + Vn+1 − Vn − V2 − V1 + V0).

Proof. Suppose that k ≥ 1. Then from the definition of the matrix Cn(V)k =
(
cij
)
, using

Theorem 1.3, we can write

∥Cn(V)k∥1 = max
1≤j≤n

n

∑
i=1

∣∣cij
∣∣ = max

1≤j≤n
{
∣∣c1j
∣∣+ ∣∣c2j

∣∣+ ∣∣c3j
∣∣+ · · ·+

∣∣cnj
∣∣}

= |c11|+ |c21|+ |c31|+ · · ·+ |cn1|
= V0 + kVn−1 + kVn−2 + · · ·+ kV3 + kV2 + kV1

= (V0 − kV0 − kVn) + k
n

∑
i=0

Vi

=
1
2
(kVn+2 + kVn+1 − kVn − kV2 − kV1 + (2 − k)V0).

Similarly, we obtain

∥Cn(V)k∥∞ =
1
2
(kVn+2 + kVn+1 − kVn − kV2 − kV1 + (2 − k)V0).

Suppose now that k < 1. Then from the definition of the matrix Cn(V)k =
(
cij
)
, using Theorem

1.3, we can write

∥Cn(V)k∥1 = max
1≤j≤n

n

∑
i=1

∣∣cij
∣∣ = max

1≤j≤n
{
∣∣c1j
∣∣+ ∣∣c2j

∣∣+ ∣∣c3j
∣∣+ · · ·+

∣∣cnj
∣∣}

= |c1n|+ |c2n|+ |c3n|+ · · ·+ |cnn|
= Vn−1 + Vn−2 + · · ·+ V3 + V2 + V1 + V0

= −Vn +
n

∑
i=0

Vi

=
1
2
(Vn+2 + Vn+1 − Vn − V2 − V1 + V0).

Similarly, we get

∥Cn(V)k∥∞ =
1
2
(Vn+2 + Vn+1 − Vn − V2 − V1 + V0).

□
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Substituting Vn = Rn (with R0 = 1, R1 = 1, R2 = 1), Vn = Cn (with C0 = 3, C1 = 0, C2 = 2),
Vn = Gn (with G0 = 1, G1 = 0, G2 = 2), and Vn = Bn (with B0 = 3, B1 = 0, B2 = 4) into
Theorem 2.7, we obtain the following corollary.

Corollary 2.8. We get the following results:

(a) If k ≥ 1, then

∥Cn(R)k∥1 = ∥Cn(R)k∥∞ =
1
2
(kRn+2 + kRn+1 − kRn + (2 − 3k)),

and if k < 1, then

∥Cn(R)k∥1 = ∥Cn(R)k∥∞ =
1
2
(Rn+2 + Rn+1 − Rn − 1).

(b) If k ≥ 1, then

∥Cn(C)k∥1 = ∥Cn(C)k∥∞ =
1
2
(kCn+2 + kCn+1 − kCn + (6 − 5k)),

and if k < 1, then

∥Cn(C)k∥1 = ∥Cn(C)k∥∞ =
1
2
(Cn+2 + Cn+1 − Cn + 1).

(c) If k ≥ 1, then

∥Cn(G)k∥1 = ∥Cn(G)k∥∞ =
1
2
(kGn+2 + kGn+1 − kGn + (2 − 3k)),

and if k < 1, then

∥Cn(G)k∥1 = ∥Cn(G)k∥∞ =
1
2
(Gn+2 + Gn+1 − Gn − 1).

(d) If k ≥ 1, then

∥Cn(B)k∥1 = ∥Cn(B)k∥∞ =
1
2
(kBn+2 + kBn+1 − kBn + (6 − 7k)),

and if k < 1, then

∥Cn(B)k∥1 = ∥Cn(B)k∥∞ =
1
2
(Bn+2 + Bn+1 − Bn − 1).

Here, we determine the Euclidean (Frobenius) norm of the k-circulant matrix Cn(V)k.

Theorem 2.9. The Euclidean (Frobenius) norm of the k-circulant matrix Cn(V)k is:

∥Cn(V)k∥F =
√

n (φ1(V)) + φ2(V),

where φ1(V) = 1
2 ((2n + 9)V2

n+2 + (2n + 7)V2
n+1 + (2n + 9)V2

n − 4(n + 4)Vn+2Vn+1 − 4(n +

5)Vn+2Vn + 4(n + 5)Vn+1Vn − 9V2
2 − 7V2

1 − 9V2
0 + 16V2V1 + 20V2V0 − 20V1V0),

φ2(V) = 1
4 (|k|

2 − 1)((2n2 + 14n + 53)V2
n+2 + (2n2 + 10n + 41)V2

n+1 + (2n2 + 14n + 69)V2
n −

4(n2 + 6n + 24)Vn+2Vn+1 − 4(n2 + 8n + 31)Vn+2Vn + 4(n2 + 8n + 29)Vn+1Vn − 53V2
2 − 41V2

1 −
69V2

0 − 116V1V0 + 124V2V0 + 96V2V1).
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Proof. From the definition of the Euclidean norm of a matrix, using Theorem 1.3, we obtain

(∥Cn(V)k∥F)
2 =

n

∑
i=1,j=1

∣∣cij
∣∣2

=
n−1

∑
i=0

(n − i)V2
i + |k|2

n−1

∑
i=1

iV2
i

= n
n−1

∑
i=0

V2
i + (|k|2 − 1)

n−1

∑
i=1

iV2
i

= n (φ1(V)) + φ2(V),

where φ1(V) and φ2(V) are as in the statement of the theorem. Next, it follows that

∥Cn(V)k∥F =
√

n (φ1(V)) + φ2(V).

□

Note that

φ1(V) =
n−1

∑
i=0

V2
i ,

and

φ2(V) = (|k|2 − 1)
n−1

∑
i=1

iV2
i .

Taking Vn = Rn with R0 = 1, R1 = 1, R2 = 1, Vn = Cn with C0 = 3, C1 = 0, C2 = 2, Vn = Gn

with G0 = 1, G1 = 0, G2 = 2, and Vn = Bn with B0 = 3, B1 = 0, B2 = 4, respectively, in
Theorem 2.9, we get the following corollary.

Corollary 2.10. We have the following results:

(a) The Euclidean (Frobenius) norm of the k-circulant matrix Cn(R)k is:

∥Cn(R)k∥F =
√

n (φ1(R)) + φ2(R),

where

φ1(R) = 1
2 ((2n+ 9)R2

n+2 +(2n+ 7)R2
n+1 +(2n+ 9)R2

n − 4(n+ 4)Rn+2Rn+1 − 4(n+ 5)Rn+2Rn +

4(n + 5)Rn+1Rn − 9),

φ2(R) = 1
4 (|k|

2 − 1)((2n2 + 14n+ 53)R2
n+2 +(2n2 + 10n+ 41)R2

n+1 +(2n2 + 14n+ 69)R2
n −

4(n2 + 6n + 24)Rn+2Rn+1 − 4(n2 + 8n + 31)Rn+2Rn + 4(n2 + 8n + 29)Rn+1Rn − 59).

(b) The Euclidean (Frobenius) norm of the k-circulant matrix Cn(C)k is:

∥Cn(C)k∥F =
√

n (φ1(C)) + φ2(C),

where

φ1(C) = 1
2 ((2n+ 9)C2

n+2 +(2n+ 7)C2
n+1 +(2n+ 9)C2

n − 4(n+ 4)Cn+2Cn+1 − 4(n+ 5)Cn+2Cn +

4(n + 5)Cn+1Cn + 3),

φ2(C) = 1
4 (|k|

2 − 1)((2n2 + 14n+ 53)C2
n+2 +(2n2 + 10n+ 41)C2

n+1 +(2n2 + 14n+ 69)C2
n −

4(n2 + 6n + 24)Cn+2Cn+1 − 4(n2 + 8n + 31)Cn+2Cn + 4(n2 + 8n + 29)Cn+1Cn − 89).
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(c) The Euclidean (Frobenius) norm of the k-circulant matrix Cn(G)k is:

∥Cn(G)k∥F =
√

n (φ1(G)) + φ2(G),

where

φ1(G) = 1
2 ((2n+ 9)G2

n+2 +(2n+ 7)G2
n+1 +(2n+ 9)G2

n − 4(n+ 4)Gn+2Gn+1 − 4(n+ 5)Gn+2Gn +

4(n + 5)Gn+1Gn − 5),

φ2(G) = 1
4 (|k|

2 − 1)((2n2 + 14n+ 53)G2
n+2 +(2n2 + 10n+ 41)G2

n+1 +(2n2 + 14n+ 69)G2
n −

4(n2 + 6n + 24)Gn+2Gn+1 − 4(n2 + 8n + 31)Gn+2Gn + 4(n2 + 8n + 29)Gn+1Gn − 33).

(d) The Euclidean (Frobenius) norm of the k-circulant matrix Cn(B)k is:

∥Cn(B)k∥F =
√

n (φ1(B)) + φ2(B),

where

φ1(B) = 1
2 ((2n+ 9)B2

n+2 +(2n+ 7)B2
n+1 +(2n+ 9)B2

n − 4(n+ 4)Bn+2Bn+1 − 4(n+ 5)Bn+2Bn +

4(n + 5)Bn+1Bn + 15),

φ2(B) = 1
4 (|k|

2 − 1)((2n2 + 14n+ 53)B2
n+2 +(2n2 + 10n+ 41)B2

n+1 +(2n2 + 14n+ 69)B2
n −

4(n2 + 6n + 24)Bn+2Bn+1 − 4(n2 + 8n + 31)Bn+2Bn + 4(n2 + 8n + 29)Bn+1Bn + 19).

The next theorem presents the eigenvalues of the matrix in (2.2).

Theorem 2.11. The eigenvalues of Cn(V)k are

λj(Cn(V)k) =
Φj(V)

(k
1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

,

where
Φj(V) = kVn − V0 − k

1
n (−kVn+1 + V1)ω

−j + k
2
n (kVn+2 − 2kVn − V2 + 2V0)ω−2j,

and

ω = exp(2πi/n) = e
2πi
n ,

j = 0, 1, 2, 3, . . . , n − 1.

Proof. By using Lemma 2.2, we have

λj(Cn(V)k) =
n−1

∑
p=0

k
p
n ω−jpVp

= −kω−jnVn +
n

∑
p=0

k
p
n ω−jpVp

= −kω−jnVn +
n

∑
p=0

(k
1
n ω−j)pVp.

Now using Theorem 1.1 (by putting x = k
1
n ω−j) and the recurrence relation Vn+3 = 2Vn+1 +

Vn, we get the required result. □

Taking Vn = Rn with R0 = 1, R1 = 1, R2 = 1, Vn = Cn with C0 = 3, C1 = 0, C2 = 2,
Vn = Gn with G0 = 1, G1 = 0, G2 = 2, and Vn = Bn with B0 = 3, B1 = 0, B2 = 4, respectively,
in Theorem 2.11, we obtain the following corollary.
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Corollary 2.12. We have the following results:

(a) The eigenvalues of Cn(R)k are

λj(Cn(R)k) =
Φj(R)

(k
1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

,

(b) the eigenvalues of Cn(C)k are

λj(Cn(C)k) =
Φj(C)

(k
1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

,

(c) the eigenvalues of Cn(G)k are

λj(Cn(G)k) =
Φj(G)

(k
1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

,

(d) the eigenvalues of Cn(B)k are

λj(Cn(B)k) =
Φj(B)

(k
1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

,

where

Φj(R) = kRn − 1 − k
1
n (−kRn+1 + 1)ω−j + k

2
n (kRn+2 − 2kRn + 1)ω−2j,

Φj(C) = kCn − 3 − k
1
n (−kCn+1)ω

−j + k
2
n (kCn+2 − 2kCn + 4)ω−2j,

Φj(G) = kGn − 1 − k
1
n (−kGn+1)ω

−j + k
2
n (kGn+2 − 2kGn)ω−2j,

Φj(B) = kBn − 3 − k
1
n (−kBn+1)ω

−j + k
2
n (kBn+2 − 2kBn + 2)ω−2j,

ω = exp(2πi/n) = e
2πi
n , j = 0, 1, 2, 3, . . . , n − 1.

The next theorem presents upper and lower bounds for the spectral norm of Cn(V)k.

Theorem 2.13. Let Cn(V)k = Circk(V0, V1, . . . , Vn−1) be a k-circulant matrix. Then if |k| ≥ 1, then√
φ1(V) ≤ ∥Cn(V)k∥2 ≤

√
V2

0 + |k|2
(
−V2

0 + φ1(V)
)√

1 − V2
0 + φ1(V),

and if |k| < 1, then

|k|
√

φ1(V) ≤ ∥Cn(V)k∥2 ≤
√

n (φ1(V)),

where φ1(V) is as in Theorem 2.9.

Proof. Note that we can write φ1(V) in the following forms.

φ1(V) =
n−1

∑
i=0

V2
i

=
1
2
((2n + 9)V2

n+2 + (2n + 7)V2
n+1 + (2n + 9)V2

n − 4(n + 4)Vn+2Vn+1 − 4(n + 5)Vn+2Vn

+4(n + 5)Vn+1Vn − 9V2
2 − 7V2

1 − 9V2
0 + 16V2V1 + 20V2V0 − 20V1V0),

φ1(V) = V2
0 +

n−1

∑
i=1

V2
i ⇒ −V2

0 + φ1(V) =
n−1

∑
i=1

V2
i .
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From Theorem 2.9, we know that the Euclidean (Frobenius) norm of the k-circulant matrix
Cn(V)k is

(∥Cn(V)k∥F)
2 =

n−1

∑
i=0

(n − i)V2
i + |k|2

n−1

∑
i=1

iV2
i

= n
n−1

∑
i=0

V2
i + (|k|2 − 1)

n−1

∑
i=1

iV2
i .

If |k| ≥ 1, then we have, using Theorem 1.3,

(∥Cn(V)k∥F)
2 ≥

n−1

∑
i=0

(n − i)V2
i +

n−1

∑
i=1

iV2
i = n

n−1

∑
i=0

V2
i = n (φ1(V)) .

i.e.
∥Cn(V)k∥F ≥

√
n (φ1(V)).

It follows that
∥Cn(V)k∥F√

n
≥
√

φ1(V).

Then by (2.1), we obtain

∥Cn(V)k∥2 ≥
√

φ1(V).

Similarly, if |k| < 1, then we get

∥Cn(V)k∥2
F =

n−1

∑
i=0

(n − i)V2
i + |k|2

n−1

∑
i=1

iV2
i

≥
n−1

∑
i=0

(n − i) |k|2 V2
i + |k|2

n−1

∑
i=1

iV2
i = n |k|2

n−1

∑
i=0

V2
i

= n |k|2 (φ1(V)) .

i.e.,

∥Cn(V)k∥F ≥
√

n |k|2 (φ1(V)).

It follows that
∥Cn(V)k∥F√

n
≥ |k|

√
φ1(V).

Then by considering (2.1), we have

∥Cn(V)k∥2 ≥ |k|
√
(φ1(V)).

Here, for |k| ≥ 1, we give an upper bound for the spectral norm of the matrix Cn(V)k as
follows. Let the matrices B and C be as

B =


V0 1 1 · · · 1 1

kVn−1 V0 1 · · · 1 1
kVn−2 kVn−1 V0 · · · 1 1

...
...

...
...

...
kV1 kV2 kV3 · · · kVn−1 V0


n×n

,
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and

C =


1 V1 V2 · · · Vn−2 Vn−1

1 1 V1 · · · Vn−3 Vn−2

1 1 1 · · · Vn−4 Vn−3
...

...
...

...
...

1 1 1 · · · 1 1


n×n

,

such that Cn(V)k = B ◦ C. Then, we have

r1(B) = max
1≤i≤n

(
n

∑
j=1

∣∣bij
∣∣2)1/2

=

√√√√V2
0 + |k|2

n−1

∑
j=1

V2
j =

√
V2

0 + |k|2
(
−V2

0 + φ1(V)
)
,

c1(C) = max
1≤j≤n

(
n

∑
i=1

∣∣cij
∣∣2)1/2

=

√√√√1 +
n−1

∑
i=1

V2
i =

√
1 − V2

0 + φ1(V).

By Lemma 2.1, we have

∥Cn(V)k∥2 ≤ r1(B)c1(C) =
√

V2
0 + |k|2

(
−V2

0 + φ1(V)
)√

1 − V2
0 + φ1(V).

For |k| < 1, we present an upper bound for the spectral norm of the matrix Cn(V)k as follows.
We define the matrices D and E as

D =


1 1 1 · · · 1 1
k 1 1 · · · 1 1
k k 1 · · · 1 1
...

...
...

...
...

k k k · · · k 1


n×n

,

and

E =


V0 V1 V2 · · · Vn−2 Vn−1

Vn−1 V0 V1 · · · Vn−3 Vn−2

Vn−2 Vn−1 V0 · · · Vn−4 Vn−3
...

...
...

...
...

V1 V2 V3 · · · Vn−1 V0


n×n

,

such that Cn(V)k = D ◦ E. Then we have

r1(D) = max
1≤i≤n

(
n

∑
j=1

∣∣dij
∣∣2)1/2

=
√

n,

and

c1(E) = max
1≤j≤n

(
n

∑
i=1

∣∣eij
∣∣2)1/2

=

√√√√n−1

∑
i=0

V2
i =

√
φ1(V).

By Lemma 2.1, we have

∥Cn(V)k∥2 ≤ r1(D)c1(E) =
√

n (φ1(V)).

So, the proof is completed as desired. □
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We consider four special cases of Theorem 2.13.
Firstly, the following corollary presents the upper and lower bounds of the spectral norm

of Cn(R)k.

Corollary 2.14. Let Cn(R)k = Circk(R0, R1, . . . , Rn−1) be a Pell-Padovan k-circulant matrix. Then
if |k| ≥ 1, then√

φ1(R) ≤ ∥Cn(R)k∥2 ≤
√

R2
0 + |k|2

(
−R2

0 + φ1(R)
)√

1 − R2
0 + φ1(R),

and if |k| < 1, then

|k|
√

φ1(R) ≤ ∥Cn(R)k∥2 ≤
√

n (φ1(R)),

where φ1(R) is as in Corollary 2.10.

Proof. Take Vn = Rn, R0 = 1, R1 = 1, R2 = 1 in Theorem 2.13. □

Secondly, the following corollary gives the upper and lower bounds of the spectral norm
of Cn(C)k.

Corollary 2.15. Let Cn(C)k = Circk(C0, C1, . . . , Cn−1) be a Pell-Perrin k-circulant matrix. Then if
|k| ≥ 1, then√

φ1(C) ≤ ∥Cn(C)k∥2 ≤
√

C2
0 + |k|2

(
−C2

0 + φ1(C)
)√

1 − C2
0 + φ1(C),

and if |k| < 1, then

|k|
√

φ1(C) ≤ ∥Cn(C)k∥2 ≤
√

n (φ1(C)),

where φ1(C) is as in Corollary 2.10.

Proof. Take Vn = Cn, C0 = 3, C1 = 0, C2 = 2 in Theorem 2.13. □

Thirdly, the following corollary presents the upper and lower bounds of the spectral norm
of Cn(G)k.

Corollary 2.16. Let Cn(G)k = Circk(G0, G1, . . . , Gn−1) be a third-order Fibonacci-Pell k-circulant
matrix. Then if |k| ≥ 1, then√

φ1(G) ≤ ∥Cn(G)k∥2 ≤
√

G2
0 + |k|2

(
−G2

0 + φ1(G)
)√

1 − G2
0 + φ1(G),

and if |k| < 1, then

|k|
√

φ1(G) ≤ ∥Cn(G)k∥2 ≤
√

n (φ1(G)),

where φ1(G) is as in Corollary 2.10.

Proof. Take Vn = Gn, G0 = 1, G1 = 0, G2 = 2 in Theorem 2.13. □

Fourthly, the following corollary gives the upper and lower bounds of the spectral norm
of Cn(B)k.
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Corollary 2.17. Let Cn(B)k = Circk(B0, B1, . . . , Bn−1) be a third-order Lucas-Pell k-circulant matrix.
Then if |k| ≥ 1, then√

φ1(B) ≤ ∥Cn(B)k∥2 ≤
√

B2
0 + |k|2

(
−B2

0 + φ1(B)
)√

1 − B2
0 + φ1(B),

and if |k| < 1, then

|k|
√

φ1(B) ≤ ∥Cn(B)k∥2 ≤
√

n (φ1(B)),

where φ1(B) is as in Corollary 2.10.

Proof. Take Vn = Bn, B0 = 3, B1 = 0, B2 = 4 in Theorem 2.13. □

Here, we present the determinant of Cn(V)k.

Theorem 2.18. The determinant of Cn(V)k is given by

det(Cn(V)k) =

Λn
1

(
1 −

(
Λ2−

√
Λ2

2−4Λ1Λ3
2Λ1

)n

−
(

Λ2+
√

Λ2
2−4Λ1Λ3

2Λ1

)n

+
(

Λ3
Λ1

)n
)

(−1)n+1(kBn + (k − B−n)k2 − 1)
,

where

Λ1 = kVn − V0,

Λ2 = k
1
n (−kVn+1 + V1),

Λ3 = k
2
n (kVn+2 − 2kVn − V2 + 2V0).

Proof. By considering the following identities

n−1

∏
k=0

(x − yω−k) = xn − yn,

n−1

∏
j=0

(x − yω−j + zω−2j) = xn

(
1 −

(
y −

√
y2 − 4xz
2x

)n

−
(

y +
√

y2 − 4xz
2x

)n

+
( z

x

)n
)

,

and
(k

1
n ω−j)3 + 2(k

1
n ω−j)2 − 1 = (αk

1
n ω−j − 1)(βk

1
n ω−j − 1)(γk

1
n ω−j − 1),

we have that

n−1

∏
j=0

(
(k

1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

)
= (−1)n+1(kBn + (k − B−n)k2 − 1),

and

n−1

∏
j=0

Φj(V) = Λn
1

1 −

Λ2 −
√

Λ2
2 − 4Λ1Λ3

2Λ1

n

−

Λ2 +
√

Λ2
2 − 4Λ1Λ3

2Λ1

n

+

(
Λ3

Λ1

)n

 .

where

ω = exp(2πi/n),

Φj(V) = kVn − V0 − k
1
n (−kVn+1 + V1)ω

−j + k
2
n (kVn+2 − 2kVn − V2 + 2V0)ω

−2j,
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and

Λ1 = kVn − V0,

Λ2 = k
1
n (−kVn+1 + V1),

Λ3 = k
2
n (kVn+2 − 2kVn − V2 + 2V0).

From Theorem 2.11, we obtain

det(Cn(V)k) =
n−1

∏
j=0

λj(Cn(V)k)

=
n−1

∏
j=0

Φj(V)

(k
1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

=

n−1
∏
j=0

Φj(V)

n−1
∏
j=0

(
(k

1
n ω−j)3 + 2(k

1
n ω−j)2 − 1

)

=

Λn
1

(
1 −

(
Λ2−

√
Λ2

2−4Λ1Λ3
2Λ1

)n

−
(

Λ2+
√

Λ2
2−4Λ1Λ3

2Λ1

)n

+
(

Λ3
Λ1

)n
)

(−1)n+1(kBn + (k − B−n)k2 − 1)
.

This completes the proof. □

We consider four special cases of Theorem 2.18.
First, the following corollary gives the determinant of Cn(R)k.

Corollary 2.19. The determinant of Cn(R)k is given by

det(Cn(R)k) =

Λn
1

(
1 −

(
Λ2−

√
Λ2

2−4Λ1Λ3
2Λ1

)n

−
(

Λ2+
√

Λ2
2−4Λ1Λ3

2Λ1

)n

+
(

Λ3
Λ1

)n
)

(−1)n+1(kBn + (k − B−n)k2 − 1)
,

where

Λ1 = kRn − 1,

Λ2 = k
1
n (−kRn+1 + 1),

Λ3 = k
2
n (kRn+2 − 2kRn + 1).

Proof. Take Vn = Rn, R0 = 1, R1 = 1, R2 = 1 in Theorem 2.18. □

Second, the following corollary presents the determinant of Cn(C)k.

Corollary 2.20. The determinant of Cn(C)k is given by

det(Cn(C)k) =

Λn
1

(
1 −

(
Λ2−

√
Λ2

2−4Λ1Λ3
2Λ1

)n

−
(

Λ2+
√

Λ2
2−4Λ1Λ3

2Λ1

)n

+
(

Λ3
Λ1

)n
)

(−1)n+1(kBn + (k − B−n)k2 − 1)
,

where

Λ1 = kCn − 3,

Λ2 = k
1
n (−kCn+1),

Λ3 = k
2
n (kCn+2 − 2kCn + 4).
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Proof. This follows from Theorem 2.18 by substituting Vn = Cn with C0 = 3, C1 = 0, C2 =

2. □

Third, the following corollary gives the determinant of Cn(G)k.

Corollary 2.21. The determinant of Cn(G)k is given by

det(Cn(G)k) =

Λn
1

(
1 −

(
Λ2−

√
Λ2

2−4Λ1Λ3
2Λ1

)n

−
(

Λ2+
√

Λ2
2−4Λ1Λ3

2Λ1

)n

+
(

Λ3
Λ1

)n
)

(−1)n+1(kBn + (k − B−n)k2 − 1)
,

where

Λ1 = kGn − 1,

Λ2 = k
1
n (−kGn+1),

Λ3 = k
2
n (kGn+2 − 2kGn).

Proof. This follows from Theorem 2.18 by substituting Vn = Gn with G0 = 1, G1 = 0, G2 =

2. □

Fourth, the following corollary presents the determinant of Cn(B)k.

Corollary 2.22. The determinant of Cn(B)k is given by

det(Cn(B)k) =

Λn
1

(
1 −

(
Λ2−

√
Λ2

2−4Λ1Λ3
2Λ1

)n

−
(

Λ2+
√

Λ2
2−4Λ1Λ3

2Λ1

)n

+
(

Λ3
Λ1

)n
)

(−1)n+1(kBn + (k − B−n)k2 − 1)
,

where

Λ1 = kBn − 3,

Λ2 = k
1
n (−kBn+1),

Λ3 = k
2
n (kBn+2 − 2kBn + 2).

Proof. This follows from Theorem 2.18 by substituting Vn = Bn with B0 = 3, B1 = 0, B2 = 4. □

3 Conclusion

In this paper, we derived explicit formulas for the eigenvalues, determinant, and various
norms of k-circulant matrices involving generalized Pell-Padovan numbers. We also estab-
lished bounds for the spectral norm. By specializing the initial values, we provided several
corollaries for Pell-Padovan, Pell-Perrin, and third-order Fibonacci-Pell sequences, unifying
and extending existing results in the literature. These findings offer theoretical foundations
and computational tools for applications in fields such as cryptography and signal processing.
Future research may extend this methodology to other structured matrices, such as Toeplitz
or k-semicirculant matrices.
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