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Abstract. This paper presents a detailed comparison of three relatively recent meth-
ods for the numerical solution of systems of Nonlinear Volterra Integral Equations of
the second kind (NVIEs-II): the Modified Adomian Decomposition Method (MADM),
the Hussein-Jassim Method (H-JM), and the Cubic Non-Polynomial Spline Function
Method (CNPSEM). The objective of this study is to evaluate the performance of these
methods in terms of accuracy, convergence, and numerical stability. To achieve this, all
three methods are applied to standard benchmark problems with known exact solu-
tions, enabling quantitative assessment.

The numerical results reveal distinct performance characteristics for each method.
Both MADM and H-JM demonstrate excellent performance, yielding solutions with
high accuracy and very low errors, occasionally approaching machine precision.
MADM exhibits rapid convergence, while H-JM provides robust numerical stability
and ease of implementation. CNPSFM displays good numerical stability and accurately
captures the overall solution behavior; however, it produces relatively larger errors, par-
ticularly as the integration interval lengthens.

This comparison concludes that the optimal choice among these methods is highly
problem-specific. MADM and H-JM are best suited for high-precision applications re-
quiring analytical insight (e.g., quantum mechanics or population dynamics), whereas
CNPSEM remains viable for applications prioritizing solution smoothness over abso-
lute accuracy. This study provides practical, evidence-based recommendations to as-
sist researchers and engineers in selecting appropriate solvers for real-world systems
modeled by NVIEs-II. Future research should extend these methods to systems with
singularities and/or delays, which have been underexplored in the current literature.
Another promising direction involves developing hybrid approaches that integrate ar-
tificial neural networks with traditional computational solvers.
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1 Introduction

Nonlinear Volterra Integral Equations of the second kind (NVIEs-II) represent a fundamental
class of mathematical models adept at describing complex, memory-dependent dynamic sys-
tems across a wide spectrum of scientific and engineering applications [5,21]. These equations
model phenomena in which the current state of a system is intrinsically dependent on its en-
tire historical evolution, making them indispensable in fields such as population dynamics,
radiative heat transfer, quantum mechanics, and viscoelastic material responses [14,18]. The
challenge intensifies when these equations involve weakly singular kernels, an area that has
attracted significant research interest [3,4,15,16].

Given their nonlinear and integral structure, analytical solutions to NVIEs-II are often
intractable for all but the simplest cases [17]. This inherent complexity has driven the devel-
opment of robust numerical and approximate analytical methods, which are central themes in
computational mathematics. A diverse array of techniques has been explored, including the
Adomian Decomposition Method (ADM) and its variants [1,19,22], variational iteration and
homotopy-based approaches [6], and various spline-based collocation techniques [8,13,15,16].
Among these, Non-Polynomial Splines (NPS) have garnered particular attention due to the
flexibility offered by their trigonometric or exponential basis functions, which can be highly
effective for handling solutions with oscillatory behavior or singularities [7,11,20]. Despite
these advancements, persistent challenges remain, including convergence instabilities exacer-
bated by strong nonlinearities [17], the need for specialized treatment of singular kernels [4],
and a relative scarcity of comprehensive comparative studies that benchmark advanced vari-
ants against one another [10,12]. Recent progress in adapting NPS methods shows promise in
addressing issues of singularity and improving convergence rates [3,13].

This study aims to bridge this gap by conducting a systematic investigation into solv-
ing systems of NVIEs-II using advanced analytical and numerical schemes, with a focus on
ensuring accuracy, convergence, and computational efficiency. We rigorously examine three
sophisticated methods:

* A Modified Adomian Decomposition Method (MADM) incorporating adaptive weights
[1,19].

¢ The Hussein-Jassim Method (H-JM), which leverages a recursive Maclaurin series ex-
pansion framework [9].

¢ A Cubic Non-Polynomial Spline Function Method (CNPSFM), utilizing a trigonometric-
exponential basis [8,13].

Our research makes significant contributions to the existing body of work in several key
ways. We present, for the first time, a structured framework for applying both the MADM [1,
19] and the CNPSFM [7,11] specifically to systems of NVIEs-II. Furthermore, we significantly
extend the applicability of the H-JM to this important class of systems [9]. These developments
are crucial, as previous studies have primarily focused on applying these powerful techniques
to single equations [2,10,20].

In addition to these novel methodological extensions, this study seeks to:

¢ Integrate recent advances in formulations robust to singularities [13,15,16].

¢ Establish a benchmark against state-of-the-art non-spline methods, such as MADM and
H-M [9,19].
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* Quantify the computational trade-offs associated with solving higher-order systems [14].
The principal objectives of this study are threefold:

(i) To perform a theoretical analysis of the convergence properties and establish a priori
error bounds for the proposed numerical schemes [5].

(ii) To conduct an empirical evaluation and comparison of their accuracy, convergence rate,
computational efficiency, and robustness when confronted with singularities or complex
nonlinearities [12,17].

(iii) To formulate evidence-based recommendations for selecting the most appropriate method
for specific application contexts [8,21].

Fulfilling these objectives will enhance the available toolkit for tackling complex systems
of NVIEs-II, thereby facilitating advancements in their application across scientific and engi-
neering disciplines [5].

2 Theoretical background

This section establishes the theoretical framework for this study. We begin by defining the
specific class of integral equations under focus: NVIEs-II. We then introduce spline functions,
which form the basis for one of the numerical methods explored.

2.1 Nonlinear Volterra integral equations of the second kind

An integral equation is one where the unknown function, u(x), appears within an integral.
We are specifically interested in Volterra integral equations of the second kind. These have a
variable upper limit of integration and feature the unknown function both inside and outside
the integral.

A single NVIE-II is generally expressed as:

u(x) = F(x) + A / Kot u(t)) dt, @.1)

where:

* ) is a constant parameter,

u(x) is the unknown function to be determined,

f(x) is a known function,

K(x,t,u(t)) is the kernel, a known function that is nonlinear in u(t),
e The interval [a, x| signifies the “memory” or history-dependent nature of the system.

This study specifically addresses systems of NVIEs-II, which involve multiple coupled
equations. A system of two equations, for instance, takes the form:

{u(x) = fi(x) + [y [Ku(x tu(t),o(t)] dt, 22)
o(x) = fa(x) + [ [Kaa(x,t,u(t), o(t))] dt,
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where Kj; and Ky are nonlinear kernels coupling the unknown functions u(x) and v(x).

Due to their nonlinear and integral nature, these systems are extremely challenging to
solve analytically. This provides the impetus for developing and analyzing robust numerical
and semi-analytic methods, which is the main focus of this thesis.

2.2 Numerical approximation using spline functions

One powerful approach for numerically solving integral equations is the use of spline func-
tions. A spline is a piecewise-defined function valued for its smoothness and flexibility in
approximating complex behaviors.

Core concepts of spline functions
Given a partition A :a = xp < x1 < -+ < x, = b of an interval [4, b], a spline function
S(x) of degree k satisfies:

1. Tt is a polynomial of degree at most k on each subinterval [x;, x;11].

2. It is continuously differentiable up to order k — 1 on [4, b], ensuring smoothness at the
junction points (knots).

While classical splines use polynomial bases, NPS incorporate trigonometric or exponen-
tial terms to enhance accuracy, especially for oscillatory or non-standard solution behaviors.
The cubic non-polynomial spline used in this study is defined over each subinterval
[xi, xi+1] as:
Si(x) = a;cos(w(x — x;)) + bisin(w(x — x;)) 4+ ¢;(x — x;) + di(x — x;)> +¢;,

where a;, b;, ¢;, d;, and e; are coefficients determined by enforcing continuity and differentiabil-
ity conditions at the knots, and w is a frequency parameter. This structure provides a flexible
basis for numerically solving integral equations and forms the foundation for the CNPSFM
method analyzed in our comparative study.

3 Methodology

This section presents the mathematical framework for solving systems of NVIEs-II. We intro-
duce three advanced methods: MADM, H-JM, and CNPSFM.
The unified structure for each method includes:

1. Fundamental theory and formulation,
2. Algorithmic steps,
3. Convergence analysis, and

4. Unique advantages for handling nonlinear systems.

3.1 Modified Adomian techniques for solving a system of NVIEs-II

This section presents our enhanced ADM designed for the efficient solution of coupled NLVIEs.
The proposed modifications, strategic splitting of nonhomogeneous terms and adaptive series
expansion, significantly improve convergence rates and computational efficiency compared to
the standard ADM, as summarized in Table 3.1.
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Remark 3.1. All three numerical techniques discussed in this study MADM, H-JM, and
CNPSFM are applied to the same general system of coupled NVIEs-II , ensuring consistent
and comparable numerical analysis.

Table 3.1: Key enhancements of MADM vs. standard ADM

Feature Standard ADM MADM (Our Approach)
Nonhomogeneous term handling | Direct use Smart splitting /series expansion
Convergence rate Linear Superlinear

Computational load High Reduced

Coupled systems Limited efficiency | Highly efficient

In this section, we broaden the application of the MADM to address a system of NVIEs-II,
presented in the general form:

u(x) = fi(x) + /Ox [knn (x, 8) Faa (u(t)) + kaa(x, £) Fia(o(t))] dt, (3.1)

v(x) = fa(x) + /Ox (ko1 (x, £) By (u(t)) + koo (x, t) Fxa (0(t))] dt. (3.2)

Here, Fi1(u(t)), Fia(v(t)), F1(u(t)), Fx(v(t)) are nonlinear functions of the unknowns
u(x) and v(x), and k;;(x,t) (i,j = 1,2) denote continuous kernels associated with the integral
operators [21].

3.1.1 Standard ADM
We assume the solutions u(x) and v(x) can be expressed as infinite series:
u(x) = Z un(x)/ U(x) = Z Un(x)' (3-3)
n=0 n=0

The nonlinear terms in the system are decomposed using Adomian polynomials. The
general formula for these polynomials is given by:

ij 1 4" LI
k=0 A=0
where (Pk represents U OY Uf.

For our specific system of equations, we apply this formula to each nonlinear function F;.
This yields the following set of Adomian polynomials:

Al = Fiy (X7 AFuy

v | Nazo
A? = i [Fia (S0 Aon) ] g/ (3.5)
AT = i (B (Sio AMur)] o0
AP = b [P (Sio Aon) ],

where All, Al2, A2l ‘and A2? are the Adomian polynomials for the respective nonlinear func-
tions.
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The standard Adomian decomposition method generates the recursive relation:

¢

MO(X) = fl(x)/

vo(x) = fa(x),

unin() = [ (oAl + ka(e A2 dt, 520, (3.6)
Unt1(X) = /Ox (kZl(x,t)Ail + kzz(x,t)Aﬁz) dt, n>0.

3.1.2 First modified Adomian technique

To enhance convergence and reduce computational difficulties, we split the functions fj(x)
and f,(x) into two parts:

{fl(x) = fu(x) + fo(x), 57)
fo(x) = far(x) + fo(x).
The modified recursive scheme becomes:

uo(x) = f1(x),

vo(x) = far(x),

1 (x) = fio(x) + /0 [k (o, ) AV + ko (x, D) AR dt,

o1 (x) = fan(x) + /0 ’ [lan (x, £) A3 + ko (x, £) AP?] dit, (3:8)

X
Upt+1 (x) = /O [kll (x, t)A;l + klz(x, t)Aiz] dt, n> 1,
X
On+1 (x) = /0 [k21 (x, t)A%ll + kzz(x, t)A,ZlZ] dt, n Z 1.
Here, Al denote the Adomian polynomials corresponding to the nonlinear functions F;;.

3.1.3 Second modification: Series expansion

For strongly nonlinear systems, we expand f1(x) and f>(x) into series:

uo(x) = fr0(x),
vo(x) = fo(x),
unH(x) = fl,(l’H‘])(x) + /Ox [kll (x, t)A}ll + klz(x, t)A}f] dt, n>0, (3.9)

X
Ous1(X) = fopnan) (1) + /O ko (x, ) A2 1k (x, ) A2] dt, 1 > 0.

3.1.4 Algorithm 1: Second MADM-II
Input:
e Nonhomogeneous functions: fi(x), f2(x).
e Kernels: ky1(x,t), kia(x,t), ka1(x, t), koo (x, t).

¢ Maximum Taylor order (K) and tolerance (¢).
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e Domain of interest: [a,b] (used for norm evaluation).
Output:

e Approximate solutions: u(x) ~ Y1, ui(x), v(x) =~ M, vk (x).
Steps:

1. Taylor series expansion:

Expand the nonhomogeneous functions using a Taylor series:
K .
~ Z ij] ,
j=0
K .
~ ]
A Z dix!.
j=0

2. Initialization:

* up(x) =cp (constant term of f; Taylor series)
e vo(x) =dp (constant term of f, Taylor series)

¢ Initialize iteration counter: n = 0
3. Iteration loop (while n < K —1):

a. Compute Adomian polynomials for nonlinear operators:

A;! = AdomianPoly (Fy1 [uy, . .., ux],n),

A2l = AdomianPoly (Fy[uo, . . L U], 1),

(Fu
A2 = AdomianPoly (Fia[vo, ..., vul,m),
(Fal
A2 = AdomianPoly (Fxlvo, ..., va),n).

b. Compute the next terms:
X
Upt1(x) = Cn+1xn+1 + /0 [kn(x,t)A,lf + klz(x,t)Aﬂ dt,

x
On+1 (x) = dn+1x”“ + /0 [kzl(x, t)A%l + kzz(x, t)A%z] dt.

c. Update partial sums:

n+1

”H 2 ug(x (Cumulative solution for u)
n+1

”*1 Z vr(x). (Cumulative solution for v)

d. Termination check:
If ||uy41]] < € and ||v,41|| < € over [g, b], then stop.
Otherwise, set n <— n + 1 and repeat from step 3a.
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4. Solution approximations:

Set M = min(n + 1, K) (actual terms used), then:
M
u(x) = Y u(x),
k=0

M
o(x) = Y v(x).
k=0

Note:
¢ The Adomian polynomials Al are computed using standard recurrence relations [1].

e The norm || - || refers to the maximum norm rn[a>g] | - | over the interval [a, b].
x€la,

3.2 Application of H-JM for solving a system of NVIEs-II

This work presents a systematic extension of the H-JM originally designed for single NVIEs-II
to coupled systems. Such systems model interdependent phenomena in physics and engi-
neering, where unknown functions u(x) and v(x) exhibit mutual nonlinear interactions. The
extended H-JM leverages recursive Maclaurin series expansions to generate successive ap-
proximations. By preserving the iterative convergence properties of the original method under
appropriate initial conditions, it achieves exponential decay of error for smooth kernels. Cru-
cially, we introduce coupling-adapted recurrence schemes to handle cross-term nonlinearities
(F;j(u,v)), ensuring stability even for high-order derivatives (us, vs).

As in the MADM, the general system of NLVIEs considered here is given by Egs. (3.1) and
(3.2).

{u(x) = fl(x) + )\fox [kll(X, B Fin(u(t)) + kiz(x, t)Plz(v(t))]dt’ (3.10)

o(x) = fo(x) + A fox (ko1 (2, £) For (u(t)) + koo (x, t) Faa (0(t)) ] dt

where u(x) and v(x) are the unknown functions, f1(x) and f>(x) are known functions, k;;(x, t)
for i,j = 1,2 are continuous kernel functions, FZ-]- are nonlinear operators, and A is a real
parameter.

We begin by applying the Maclaurin series expansion to each equation around x = 0.
Using the differential operator D, = dd—;, this leads to:

4
x=0

u(x) = ;’l"D (fl(x) FA /0 [yt (x, £) Fug (u(8)) + ko (x, t)P12(v(t))]dt)

S ; (3.11)
v(x) = Z iTD;‘ (fz(x) + /\/0 (ko1 (x, £) Py (u(t)) + kzz(x,t)Fzz(v(t))}dt>
i—o b

x=0

Assuming that the solutions of u(x) and v(x) can be written as power series:

u(x) = éuxx» o(x) = fé (%), (3.12)

1
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we substitute (3.12) into (3.11), then equate the coefficients of like powers of x, yielding:
00 o xi . X
Y ul) =) 5Dk (A0 +4 [
i=0 i—o b 0 |

+k12(x, t)Flz (i Uk(t)>] dt>
k=0 |

) ’ ) (3.13)
Z ZXT ( —|—)\/ k21(x,t)F21 (Z uk(t)>
i=0 i=0

—|—k22(x,t)F22 (Z Z)k(t))] dt)
k=0

Isolating the i = 0 terms from the series on the left-hand side of Equation (3.13) gives:

)+ Zuz+l xTiDi (ﬁ(X) +A/x [kn(x/f)Fn (i “k(ﬂ)
i=0 0 k=0

+k12(x, t)Plz (i Z)k(t)>] dt)
=0 =0 . (3.14)
+ EUZ—H XT (fz +)\/ [k21 X, t)le (Z uk(t)>
0

k=0
—|—k22(x t)FQZ (Z ( ))] dt)
\ k=0

Equating terms of the same powers for both sides, we obtain the recursive formulas. The
zeroth-order approximations are obtained as:

kn (X, t)Fll (i Mk(t)>

k=0

x=0

(

Ms

Mz

3 .
I

x=0

uo(x) = u(0) = f1(0),
vo(x) = 0(0) = f2(0).
The first-order approximations are:

x
ur(x) = =D

x <f1(x) —|—/\/(;x [kll(x, t)Fll(Mo(t)) +k12(x, t)Flz(Uo(t))]dt>

1
vl(x) = %Dx <f2(x) —|—/\/0x [k21(x, t)F21(M0(t)) +k22(x, t)Fzz(Udt))}dt)

The second-order approximations are given by:

uz(x):’;Dg <f1 +A/ eaa (o, £) Fua (uo () + ua (t))
+kia(x, ) Fia(vo(t) +01(t))]dt) ),
vz<x>:’jpi<f2 04 [ floa (o) B o) + s 1)
+kao (x,t) o (0o (t) + v1(t))]dt) -
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The general recurrence relations for higher-order terms are:

yitl

ui+1(x) = (i—l—l)!Dl—H ( —|—/\/ k11 X t Fn Zu]

+k12(x t)Flz( (t ) ’
(3.15)

(i+1)!

i

—|—k22 x t Fzz Z’()] t )
j=0 =0

1+1 i
vir1(x) = Dy (fz +7\/ (ka1 (x, t) Pt Z
(1)

fori > 0.
After computing a finite number n of terms from the recursive relations above, the approx-
imate solutions to the system are given by:

where 7 is chosen according to the desired level of accuracy.

3.2.1 Algorithm 2: Hussein—Jassim iterative method for coupled NVIEs-II
Input:

e Nonhomogeneous functions: fi(x), f2(x).

Kernels: k11 (x, t), klz(x, t), k21 (x, t), kzz(x, t).

Nonlinear operators: Fi1, Fi2, F1, Fo.

Parameter: A.

¢ Maximum iterations (Nmax) — upper iteration limit.

Tolerance (¢) — convergence threshold.
e Norm domain [4, b] — evaluation interval.
Output:

¢ Approximate solutions:

¢ Computed iterations (M) — actual iterations used.

Steps:
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1. Initialization:

up(x) = f1(0), (initial condition for u)
vo(x) = f2(0), (initial condition for v)
55,0) (x) = up(x), (cumulative solution for u)
st (x) =vo(x), (cumulative solution for v)
i=0,

converged = false. (convergence flag)

2. Iterative computation (while i < Npax and not converged):

a. Partial solutions:

. i
s () = Y uj(t), (cumulative u up to i)
=0

_ i
Sz(,l)(t) =Y 0j(t). (cumulative v up to i)
i=0

. Integral expressions:

Gy (x) = fu(x) +)\/Ox [l (x, £) Fir (S8 () + ko (x, £) Fra (S8 (1)) ] at,

Gy (x) = fa(x) +)\/0x (ka1 (x, £ Far (S (£)) + kaa(x, ) F2 (S (1)) at.

. Next term calculation:

() = e ®)
0141 (%) (Z-xji),D;HGg)(x) R
. Solution update:
Su () = 8 (0) + wiga (),

. Convergence check:

oy = HS'(jJrl) - S'(j) Hoo,[u,b] = ||ui+1Hoo,[u,b}r

80 = IS5 = S| o oy = o1 o -

If6, <eand d, < &
converged < true
Else:
i+i+1

263
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3. Solution assembly:

M =i+1, (final iteration count)

M
u(x) ~ Y u(x),
k=0

M
o(x) = Y v(x).
k=0

Note:

¢ The norm | - || [s,) denotes the maximum norm: max |- |.
Y x€la,b]
¢ Convergence is achieved when the incremental terms u;,1 and v;;; become sufficiently
small.

3.3 Application of the CNPSFM for solving systems of NVIEs-II

Classical cubic splines often fail to capture the oscillatory or rapidly varying behaviors inher-
ent in coupled nonlinear Volterra systems. To address this, the CNPSFM enriches the stan-
dard cubic basis with trigonometric/hyperbolic functions and a tunable frequency parameter,
k, yielding C2-continuous approximations with enhanced adaptability.

In this work, we formulate a rigorous CNPSFM framework for systems of NVIEs-II and
construct a fifth-derivative matching scheme that leverages boundary derivatives generated
via repeated differentiation of the Volterra operators. We also incorporate an adaptive selec-
tion of k through residual minimization and design a coupling-aware block discretization for
the nonlinear kernels.

Under standard smoothness and Lipschitz assumptions, we establish the convergence and
stability of the method and demonstrate its accuracy on benchmarks exhibiting both oscilla-
tory and fast-growing solutions.

As in the previous methods, the general system of NLVIEs considered here is given by
Egs. (3.1) and (3.2), which are reformulated in this section for the purpose of applying the
CNPSFM scheme.

M(X) = f1 (.’Xf) + /Ox [kll(x, t)Fll(M(t)) —|—k12(x, t)Flz(’U(t))] dt, (316)
v(x) = fZ(x) + /Ox [k21(x, ) For(u(t)) + ko (x, t)FZQ(Z)(t))] dt. (3.17)

In this formulation, u(x) and v(x) denote the unknown functions to be determined, while
fi(x) and f(x) are known continuous functions. The terms k;j(x,t), i,j = 1,2, represent
the kernel functions associated with the integral operators. The nonlinear behavior of the
system is captured through the functions F;;, which may take different forms depending on
the specific application or model under investigation. This general representation enables
the modeling of a wide range of nonlinear interactions and coupling effects within the same
framework.

The interval [a, b] is divided into n subintervals with equal width & = (b —a)/n, and nodes
x; = a+ih, where i = 0,1,...,1n. On each subinterval [x;, x;.1], the functions u(x) and v(x)
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are approximated by the following cubic non-polynomial spline functions:

¢1i(x) = aricos (k(x — x7)) + byisin (k(x — x1)) + c1i(x — x1) + dii(x = 2:)* + eni(x — %) + gui,
(3.18)
@2i(x) = azi cos (k(x — x;)) 4 by sin (k(x — x;)) + coi(x — x;) + doi(x — ;) + eai(x — x;)° + goi.
(3.19)

Here, k is a frequency parameter chosen adaptively to enhance convergence and capture os-
cillatory behavior.

To determine the unknown coefficients ay;, by;, c1i, d1i, €1i, §1i and ay;, by;, i, doj, €2;, g0 of the
spline functions used to approximate u#(x) and v(x), we compute the first through fifth deriva-
tives of the expressions in Egs. (3.18) and (3.19), resulting in the following relations:

¢';(x) = —kay;sin (k(x — x;)) + kby; cos (k(x — x;))
“+ 1+ Zdli(x — Xl') + 3611'(36 — Xl')Z,
@li(x) = —K?ay; cos (k(x — x;)) — K*by;sin (k(x — x;))
-+ 2d11’ + 6€1i<x — xi),
([)S)(x) = k3a1i sin (k(x — xi)) — ksbli cos (k(x - Xi)) + 6e;,
qog? (x) = k*ay; cos (k(x — x;)) + k*by; sin (k(x — x;)),
(pg?)(x) = —Kay;sin (k(x — x;)) + k°by; cos (k(x — x;)),
(3.20)

@5;(x) = —kap; sin (k(x — x;)) + kby; cos (k(x — x;))
+ 0o + 2di(x — x;) 4 3ezi(x — x;)?,

@i (x) = —K*ay; cos (k(x — x;)) — Kby sin (k(x — x;))
-+ Zdzl' + 6€2i<x — xi),

(PS)(X) = k3a2i sin (k(x — xi)) — ksbzl' Ccos (k(x — Xi)) + 665;,

qogf) (x) = k*ai cos (k(x — x;)) + k*by; sin (k(x — x;)),

{ (pg’)(x) = —Kaysin (k(x — x;)) + Kby; cos (k(x — x;)).

By substituting x = x; into the above equations (Egs. (3.18)—(3.20)), we obtain simplified
expressions for the spline values and their derivatives at the nodes, which will be used to
construct the numerical scheme:

(@1i(xi) = a1 + g1, @21 (x;) = agi + i,

q)/li(xi) = kby; + c1i, 90/21'(.751') = kby; + co4,

o1 (xi) = —kPay; + 2dy, @hi(x;) = —K*a3; 4 2ds;,
gog’)(xl) = _k3b11 + 6e1;, (PS (xl) = —k3b21 + 6ey;,
gogéll)(xl) = k4ali/ q)g}) (xi) = k46l21,

4’%?(%’) = Kby gog’)(xl) = Kby,



266 F A. Othman and S. A. Mohammed

And we get the values of ay;, by;, c15,d1;, €15, and gy; as follows:

1

ay; = qu)g?)(xi), (3.21)
1

by = kf5q0§?)(xi), (3.22)

c1i = @1;(x;) — kby, (3.23)
1

dy; = E(qpll/i(xi) + Kay), (3.24)
1

el = 6(4’5?)(3@') + Kby, (3.25)

g1 = @1i(xi) — an;- (3.26)

Similarly, we can get the values of ay;, by, c2i, d2i, €2, and g»; as follows:

1

y; = k—4<p$)(xi), (3.27)
1

byi = kT.—,QOS)(xi); (3.28)

Coi = @;(xi) — kbyi, (3.29)
1

dyi = 5 (q)'z/i(xi) + kzazl'), (3.30)
1

ey = 6 ((PS)(%‘) + kabzl‘), (3.31)

Q2 = @2i(x;) — ay;. (3.32)

3.3.1 Derivative matching conditions

Having established the explicit coefficient formulas, we now determine the nodal derivative

values q)g) (x;) and q)gf) (x;) (k=0,1,...,5) through systematic derivative matching. This pro-

cess involves differentiating the system of integral equations (3.16)—(3.17) up to fifth order and
evaluating at each node x;. The derivation is extensive but follows a systematic pattern. We
present the complete derivation for transparency and reproducibility, organized by derivative
order.

Derivative matching for u(x) Zeroth derivative (Initial condition):
uy = u(a) = fi(a). (3.33)
First derivative: Differentiating equation (3.16) once and applying Leibniz’s rule,

w'(x) = f1(x) +kn(x, x)Fiy (u(x)) 4 kia(x, x) Fia (v(x))

[ [aklggft)pu(u(m + XD e o) a

Evaluating at x = a (where the integral vanishes):

uy = f1(a) + ki1(a,a)Fi1(uo) + kiz(a, a)Fiz(vo). (3.34)
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Second derivative: Differentiating again and applying the product rule to k;;(x, x)F;:

W) = F6) 4 i )R (0] + 2 o, ) P (0(0)]
L [ I P () dt]

+ d”; [/Oxaklza(xx't)lfu(v(t))dt} .

For the first term involving ki1 (x, x)Fi1 (u(x)):

o) F )] = [P 28] o a0+ 2) () ()

Evaluating at x = a:

ok ok
ug — 1”(51) + [a; + 8;1] Fi1(uo) + k11 (%”)Hl(”o)“()
(a,a)

okip | Jky2
[ax TS

(3.35)
] Fiz(vg) + k12(a, a) Fi5 (vo) vy
(aa)

Third derivative: Continuing the differentiation process:

9%k 0%k 0%k
=+ | TE g G|

) [8;21 + Blacﬂ - Fiy (uo)ug

+ Kua(a, ) [l (00) (52 + Efy ()]
+ ok ol S . Fafo)
+2 [ag;z + agf] - Fi5(v0)v}

+ k12 (a, ) [F{3(v0) (v))* + Fip(vo) g -

(3.36)
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Fourth derivative:

9%k11 9%k11 k11 %kn

@ _ )
=A@+ [ o Yoot Toaxer T op LM) Fin (o)

9%k11 0%ky1 . 9%kn / /
a2 " “oxat | of ](QIH)F“(”O)”O

+3[
+] [y (10) ()2 + Fly (s0) ]
(a,a)

+Kr (a,a) [ (uo) (uh)® + BE}; (o) uyuly + Ffy (o) ul)]

3.37
i 83k12 +383k12 +383k12 n 83k12 E (U ) ( )
x> " Tox29t | ToxdR T 9B |
82k12 azk12 a2k12 ! /
3 [ o Zoxat T ap ](M) Fra(v0)7
ok, Ok
+3| 52+ 02| [Fpon) 64+ FaCon)ef]
(a,0)
+kia(a,a) [FL3) (00) (vh)° + 3F{5(v0)0holf + Fiy(v0)05”].
Fifth derivative:
uy) = £ (a)
84k11 a4k11 a4k11 a4k11 a4k11
* [ ot ot T %9ar T toxan T oR LM) Fin (uo)
[9%k1 93kq1 k11 %k / /
419w T Toarer T on ](M) Fia (uo)g
—azkll 82kll azkll 11 1\2 ! "
+6 EE Zaxat 572 ](M) [Fy (o) (u)* + Fiy (o) ug |
ak ok 3 3
ks afk T () 0"+ 3 s+
a,a
*-kn(ﬂ/ﬂ)U#?(“0)0404—F6ff?(“0)0k02 0 +4F]) (uo)upul”
+ 3F}) (uo) (1)) + Fiy (o) ] (3.38)

.
+4

+6

+4

k1 9*k12 o*k12 o*kyy koo
ox4 + 4ax3at + 6ax28t2 + 48x8t3 o :| (o) PlZ(UO)

[°kiy |, 8k ki knn Ff,(v0) vt
| ox3 ox2ot dxot2 o3 (o) 12(00)7g
—azklz 282k]2 azk12
| ox? 0xot ot2

ox ot

]()FM%M%Y+HA%W&
a,a

] ﬂﬁ%mwf+%am%%+%@m@}
(a,a

me[(WQMM%KYWHﬂWW)

+3F{y(00) (0f)? + Fia (v0)ol)].
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Derivative matching for v(x) Similarly, for obtaining the numerical approximation of equa-
tion (3.17), we differentiate it five times with respect to x and substitute x = a:
Zeroth derivative (Initial condition):

vo = v(a) = fo(a). (3.39)
First derivative:
vy = f5(a) + ka1 (a,a)Fo1 (10) + kaz(a,a) Faz (vo). (3.40)
Second derivative:
ol = £y (a) + [z{il + 315;1] Fo1(uo) + ka1 (a, a)Fyy (uo) ug
okyy ko - , , (34D
[ax + at} » Fxo(v0) + ko (a, a) Fyy (vo)vp.

Third derivative:

3) _ (3 82k21 82k21 82k21
£, (a) + [ 2 +28xat T Ex1(up)

okyy | ko / /
+ 2 |:ax + at:| (a,a) F21(M0)M0
+ ko1 (a, @) [F3y (uo) (up)* + Fpy (u0) ug]

3.42
4 [azkzz 82k22 82k22 ( )

o oxar T ap ](M) Fz(v0)

+ kaz(a,a) [F3(00) (v))* + Fip(00)vg].
Fourth derivative:

) 4 ko1 | , 0% kx| 0%kn
% =h (”H[axS T3t e T op |, M)

9%k 9%k 9%k
+3 [ o o0k a;} ., P

ko1 ko
3 [ax + at} » [E3 (u0) (u)* + F3y (o) ug |

+ ka1 (a,0) [E57 (o) (u)* + 34y (o) + Fy (1t0) g
Php  Pkn L Pkn  Pkn
- [ o Saxar Taxar T op ](m F(v0)

%k 0%kxn  kxn / /
o " Paxar T op ](m Fa(v0)o0

ok Ok
5 [a;z“L ;Tf } o) [Ej(v0) (vh)? + Fj (o)} ]

(3.43)

2

+kna(a,a) [ES) (00) (vh)? + 3F4h (v0) 0ol + Fh(v0)0)].
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Fifth derivative:

V=R

My ky  0%km 0%y %kn

[8x4 49t T Caxar T Yarer T am ](M) Fan (o)
[0%ka1 |, 0%k %ky1 | 9%kn B} (o)1

ox® Tt Taxarr T aP |, 20N

[ 0%k 0%k 9%k
#6250+ P

+4

[ ok ok
4 afcl+aﬂ< ) (37 (10) (4h)® + 3F4; (o) gy + Fay (o) uf”]

+ oy (a, a) [ELY (o) () * + 6L (u0) (1) 2uty + 4FS (o) )

+ 3 (10) () + Fiy (1) (3.44)
Phkn | O%n | kn | %kn | 9n
[ axt T *axar T T Yaxer T o ](m Fz(%)
Pk | Pk Pk Fhn]
| ox® T Tox2at | Toxor2 T af |, 200

[ 0%k 0%k 9%k
£ o 2 o (B + Pl

+4

[ ok ok
TSt aﬂ [ES) (00) (0h)° + 3E} (en)ehely + Fha(w0)ol?]
L (a,a)

+kaa(a,a) [Fly (v0) (0h)* + 6F33 (v0) (v9)20f + 4Fy (o) vy
+3F3(00) (0f)2 + Fa(00)0)].

3.3.2 Algorithm for solving a system of NLVIEs using CNPSF

The following algorithm summarizes the complete procedure for solving the system of NLVIEs
(3.16)—(3.17) using the CNPSFM.

Step 1: Set

a ) .
h = o x;=x9+ih, i=0,1,2,...,n, xo=4a, x,=0>0.
Step 2:

1. Evaluate a4, b1o, c10, d10, €10, and g19 by substituting equations (3.33)—(3.38) into equations
(3.21)—(3.26).

2. Evaluate ay, bao, c20, d20, €20, and gog by substituting equations (3.39)—(3.44) into equations
(3.27)—(3.32).

Step 3:
1. Calculate ¢10(x) using Step 2(1) and equation (3.18) for i = 0.

2. Calculate ¢y0(x) using Step 2(2) and equation (3.19) for i = 0.
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Step 4: Approximate 17 &~ @19(x1) and v1 =~ @20(x1).
Step 5: For i = 1 to n — 1, do the following steps:
Step 6:
1. Evaluate ay;, by, c1;, d1i, €15, and g1; using equations (3.21)—(3.26) and replacing

u(x;), u'(x;), u”(x;), u(3)(xl-), u(4)(x,-), u(5)(xi),

by

( (4) 6)(

01 (%), 9li(x), @fi(x), o (%), 9\P (%), 917 (x).

2. Evaluate ay;, by;, ¢2;, d2i, e2;, and g»; using equations (3.27)—(3.32) and replacing
v(xi), o' (%)), 0" (x1), o) (x1), 0@ (%), o) (i),

by

P2i (%), O (i), @%i(x:), 95 (x1), @5 (x:), 93 (%),

Step 7: Calculate ¢y;(x) and ¢5;(x) using Step 6 and equations (3.18) and (3.19).

Step 8: Approximate u; 11 = @1;(xi11) and vi11 = @ai(%i41)-

4 Results and discussion

This section aims to evaluate the performance and effectiveness of three different numerical
methods for solving systems of NVIEs-II. The MADM, the H-JM, and the CNPSFM will be
applied to a set of illustrative examples. We will first present a graphical comparison between
the approximate solution obtained from each method and the exact analytical solution. Subse-
quently, a detailed quantitative comparison will be provided through tables summarizing the
absolute error values at different points to verify the accuracy and reliability of the proposed
methods.

4.1 Application of the MADM

Example 4.1. Consider the following system of NVIEs-II [21]:

u(x) = cosh(x) —x + /Ox (u?(t) — () dt,

o(x) = sinh(x) — %sinhZ(x) + /O Y — O (2(0) + (1)) dt.

This system has the exact solution:
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First Modification Splitting f1(x) and f>(x) into two parts:

fu(x) = cosh(x),  fia(x) = -
‘ 1. (4.3)
fo1(x) =sinh(x), fao(x)= ~3 sinh”(x).
Using the recursion relation (3.8), we get:
up(x) = f11(x) = cosh(x), (4.4)
vo(x) = fo1(x) = sinh(x), (4.5)
ul(x) = f12 X + /x All — Alz) dt
= fia(x +/ (t))dt
= —x +/ (cosh?(t) — sinhz(t)) dt =0, (4.6)
0
0n(x) = fu() + [ (x=0) (A3 + A7) dt
— falx) [ D (u(1) + (1) a
— —% sinh?(x) + /Ox(x — t)(cosh?(t) + sinh?(t)) dt = 0, 4.7)
Upgq(x) = /0 ' (A=A dt=0, n>1, (4.8)
Opi1(x) = /Ox(x — 1) (A2 + AZ)dt=0, n>1. (4.9)
This results in the precise solutions:
u(x) = cosh(x), (4.10)
v(x) = sinh(x) '

Second Modification To apply the second modified technique, let us first expand the func-
tions f1(x) and f>(x) in terms of their Taylor series expansion:

1, 1 1 1 0

f1( )—1—x+2x +ﬂx +ﬁ0 +m +O(x ), (4.11)
Lo s 1y 15 16, 1 7 1

fal) = x =327+ g = gt 4 an = mx® gt = gagx + O, (4.12)

Applying the recurrence relation (3.9):

1, (4.13)
X, (4.14)

fio(x)
fa0(x)

uo(x)
vo(x)
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=—x+ [ 1-»)dt= —%x3, (4.15)

01(x) = fa(x) + [ (x = 1) (43 + AR d
_ —%xz + /Ox(x — (2 + ) dt

IR - R A NPT
=5« -l-/o(x H(1+2)dt = o, (4.16)

ux(x) = fipo(x) + /Ox (A%l _ A%Z) dt

1 x
= Exz —|—/ (2uouy — 2vgvy ) dt
0

_1, 1, 1 417
2Y T8 T3t (4.17)

X
02(x) = fon(x) + /0 (x — ) (A2 + AZ) dt
= %x3 + / (x — 1) (2uouq + 2vgvy) dt
0
1, 1 1,

— -3 -5, -
= 6x 30x +252x, (4.18)

us(x) = fiz(x) + /Ox (A%l - A%Z) dt

1 x
— ﬂx‘l +/() [(2u0u2 + u%) — (22)07)2 + U%)] dt
1, 1, 2. 11, 5

= 3X+ o e 3t (4.19)
v3(x) = fo3(x) + /Ox(x —t)(A3' + AF?) dt
= —%xél + O'x(x — 1) [(Quoua + u3) + (2090, + 07)] dt
_ —%x4 _ 5017403(8 + 601748x10, (4.20)
ug(x) = fra(x) + /O.x (A — AF?) dt
— /Ox [(2uous + 2uyuz) — (20903 + 2010,)] dt
— 1x4 + le £x6 + ﬁxs + ix10 LR (4.21)

6 60" 240 10080 945~ 12096
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04(x) = foa(x) + /0 C(x— 1)(AD 1 AR)

1 X
= mx5 + /O (x —1t) [(2u0u3 + 2uqup) + (2ugvs + 20102)} dt

a 30240

1 1
9 + 11 4 x13’ (422)

7
+ 11880° ' 157248

24% T 360° T 1260

us(x) = fus(x) + /0 (Al - AR ar
1

X
8 2 2
20320° +/O [(2uous + 2urus + u3) — (20904 + 20103 + v3) ] dt
7 . 01 11 , 167 5 907
= 50" T180" T 120° " a0320" T 25360"
409 ;131 4 37 .

_ _ , 423
831600° ' 9266407 9906624 (4.23)
X
vs(x) = fo5(x) +/0 (x —t)(AF' + A?) dt
1 X
= _EX6 + /0 (x — t) [(2uous + 2urus + u3) + (209v4 + 20103 + 03) ] dt
_ 7 12 1 13 151 14 1 15 41 16
= T16200° " 56700° T o07200° ' 145800° 2916000
639 1 197 37 ”
L L _ 424
449064000 1021620600 7132769280 (4.24)
Summing the series, we obtain:
1 2 1 4
u(x) =14 zx*+ —x*+--- = cosh(x),
% 2‘11 (4.25)
_ ~ A3 ) . — Qf
v(x) =x+ i + 50" + sinh(x).

T
D == Exact v(x)
b | |= 3= Approximate v(x)

=—©— Exact u(x)
F|= D= Approximate u(x)

0 02 0.4 06 08 1
X X

Figure 4.1: The exact and numerical solutions of u(x) and v(x) for Example 4.1 by MADM-IL

Figure 4.1 demonstrates a visual comparison between the exact and approximate solutions
obtained by applying the MADM-II method. As shown in the left plot, the approximate
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solution of u(x) (represented by red squares) closely follows the exact solution (represented
by blue circles). Similarly, the right plot illustrates the high accuracy of the method for v(x),
where both solutions are almost overlapping. This reflects the efficiency and high accuracy of
the MADM-II method in solving the given nonlinear system.

25 x10® x1071°
T - Error |Exact - Approximate| for u(x)‘ ‘—0— Error |[Exact - Approximate| forv(x)‘
A
27 1 15t
U I
I
=151 I — !
g ] g 1 .
w i 1
11 | . 1
! 1
A 05r /‘
05} / ]
4 ’
A A A A b A A 4 0 & —6 —6——6—6— 6 ”/
A—A—A——A———A——h r— 90—
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 4.2: Absolute error of #(x) and v(x) for Example 4.1 by MADM-IL

Figure 4.2 illustrates the absolute errors |Exact — Approximate| for both u(x) and v(x).
The errors remain extremely small across the entire interval, with maximum values on the
order of 1077 for u(x) and 107! for v(x). This further confirms the high precision of the
MADM-II approach. The errors are negligible except near the endpoint x = 1, where a slight
increase is observed but remains within acceptable bounds for practical computations.

Example 4.2. Consider the following system of NVIEs-II [21]:

e¥ —sinh(2x) + [y (u2(t) + 0%(t))dt,

u(x)
{U(x) —e ¥ 4+1— COSh(Zx) + fox (uZ(t) o Uz(t))dt, (4.26)

with exact solution:

First Modification: Splitting f1(x), f2(x) into two parts:

fu(x) =e%,

f12(x) = —sinh(2x),
fa(x) =e77,

fa2(x) =1 — cosh(2x).
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Using the recursion relation (3.8), we get:

ug(x) = fu(x) =e?,
vo(x) = far(x) = e,
n(x) = fa(x) + [ (A + AR)dE = falx) + [ ((0)+ 25 (0)

= —sinh(2x) + /Ox(e” +e )dt =0,
01(x) = fo(x) +/0" (A2 AR)dt = fn(x) +/Ox (3 (1) — v (1)) dt
=1— cosh(2x) + /Ox(eZt — e )dt =0,
Uyi1(x) = /Ox (A}l1 + A}lz)dt =0, n>1,

X
Upi1(x) = /0 (AZ— AZ)dt =0, n>1.

This results in the precise solutions:

Second Modification: To apply the second modified technique, let us first expand the func-
tions f1(x) and f>(x) in terms of their Taylor series expansion:

e le Tl S 1 17,
i) = 1=t 5 = o o % e~ soa0t T OO
TV I S S S SN SNV S
fox) =1 —x =52 = = - g%~ 5™ 5o HOU)
Applying the recurrence relation (3.9):
uo(x) = fro(x) =1,
Z’0()=f o(x) =1,
X
up(x) (x) / (A dt = —x+ [ (uj(t) +o§(t))dt = x,
0

v1(x) = foa(x -I—/ (AF' — AFP)dt = —x + ; (uj(t) — §(t))dt = —x,

g 1
ua(x) = fi2(x) +/ (AT + AP)dt = EXZ —l—/ (2uouy + 2vgvy )dt = 5xz,
0 0

1
AR
Yoo 12 7 3 X 2 2 13
uz(x) = fi3(x) + ; (A7 + Ay)dt = —g¥ +/0 [(2uouz + ut) + (20002 + v7)dt = it
x 1 x 1
v3(x) = fa3(x) +/O (A%1 — A%)dt = —8x3 +/O [(2uouz + u?) — (2vgvs + v%)]dt = —gxs,
x 1 x 1
us(x) = fra(x) + (A%,1 + A%Z dt = ﬂx‘l + /0 [(2u0u3 + 2uqup) + (2pvs + 20102)]dt = ﬂx‘L,

A*)
)
)
02 (x) = foo(x) + /Ox (AT — AP?)dt = —§x2 + /Ox(Zuoul — 20907 )dt =
)
)
)
)

X 5 X
va(x) = fra(x) —1—/0 (A3 — AP)dt = —§x4 —1—/0 [(2uous + 2uiuz) — (20003 4 20107) |dt = —x*.
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us(x) = fus(x) + / (A 4 AR

31, L s
=~ 150" + / [(Quous + 2uruz + u3) + (20004 + 20103 + v3) |dt = o0
vs(x) = fas(x) + / (A% — AZ)dt

1 1 .

— 120x + / (2ugus + 2uyuz + u3) — (20004 + 20103 + 03)|dt = ~ 120"

The approximate solution is:
u(x) =1+x+ 322+ 23+ Lt Jgx® + - = ¢,
o(x)=1—x+212 =183+ Lt — L4 =™,
28 T T T T T T T T
—@— Exact g 1 —@— Exact

[|—m Approx. (5 terms) — B - Approx. (5 terms)

(x)

X X

Figure 4.3: The exact and numerical solutions of u(x) and v(x) for Example 4.2 by MADM-IL

Figure 4.3 presents the comparison between the exact solutions and the approximate solu-
tions obtained by applying MADM-II with five terms. In both subfigures, it is observed that
the approximate solutions closely match the exact solutions across the entire interval x € [0, 1],
demonstrating the robustness and high precision of the MADM-II method.

%10 103

16

141

12+

081

Errorin u(x)
Error in v(x)

06

04r

02r

A A A o b b V'S é L
2 2 3 v v v v v
0 0.2 0 0.2 0.4 0.6 0.8 1
X X

Figure 4.4: Absolute error of u(x) and v(x) for Example 4.2 by MADM-IL

The absolute error analysis displayed in Figure 4.4 indicates that the maximum absolute
error for both u(x) and v(x) is approximately 1.6 x 1073. The error remains relatively small
and stable over most of the domain, with a slight increase near x = 1, confirming the efficiency
of the method even for nonlinear and more complex forms of the NVIEs-IL
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4.2 Application of the H-JM
Example 4.3. Consider the following system of NVIEs-II:

u(x) = cosh(x) —x+ [y (u(t) —o*(t))dt,
v(x) = sinh(x) — 1 sinh?(x) + [; (x — t) (u?(t) + 0%(t))dt,

with exact solution:

(4.27)

u(x) = cosh(x),
v(x) = sinh(x).
When we apply the algorithm of the new technique H-JM to Equation (4.27), we obtain:

Zu ) = cosh(x —x+/ Z f(t)—Zv?(t))dt,
= T . o (4.28)
Zvi(x) = sinh(x) — = sinh?(x) + ; (x —1t) ( Y ui(t)+ ) o (t))dt
i=0 i=0 i=0
Uy = 1/
00 = 0,
X
U = xDx(cosh(x) — X —|—/0 (12 - OZ)dt> = 0,
. 1. .5 X
v = xDx<smh(x) ~5 sinh”(x) +/ (x—t)(1+ 0)dt> L’
x? 2
u2:2—!D2<Cosh —x+/ Y
2
v = D3 ('sinh(x) - 5 L sinh?(x) +/ (x=t)1+F)dt) =0,
: 0 x=
X 3 g P o
Uz = an<cosh(x) — x—i—/o ((1 + E) —t )dt)xzo =0,
3 X 2 3
U3 = %Di(sinh(x) — ~ sinh?(x) —I—/O (x—t)((1+ —')2 + t2)dt>x:0 = %,
x4 x £2 £ x4
Uy = Ech(cosh(x) —at [ (A5 g)z)dt)xzo =5
x* : 1. x 2 £
vy = EDi(sme) — 5 sinh’(x) + =D (U )+ 5)Z)UZt)x:O — 0.

The general recurrence relations are:

yit1 - x , i ) i ) ALY + 1 is even,
- - i _ 2 (0 _ . _ ) Gty
ui1(x) =] D: (cosh(x) X+ /0 <];) uj (1) ];) vj (t))dt> o 0 it 1is odd,
xi+1 i1 ) 1 ] 2 X i ’ i > 0
Vi1 (x) = S (smh(x) — 5 sinh’(x) + /0 (x —t) ( Y ud(t) + Zv]-(t))dt>x20 {7

j=0 j=0

The approximate solution of Equation (4.27) is therefore:

2 4 o . 2i
x* x x
— 1 —_ _— — ,
u(x) tortot i;() 2!
3 2i+1

(i+1)!

ifi+1is
ifi+1is
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Figure 4.5: The exact and numerical solutions of #(x) and v(x) for Example 4.3 by H-JM.

Figure 4.5 shows the comparison of the exact and approximate solutions using H-JM with
ten terms of the Maclaurin series expansion. The numerical results match the exact solutions
perfectly across the entire domain, demonstrating the very high precision results that can be
obtained with H-JM for this problem.

%1071 x107"

25

25

‘ —@— Error |Exact - Numerical| for v(x) ‘

‘—.— Error |Exact - Numerical| for u(x}‘

0 0.2 0.4 0.6 0.8 1
X X

Figure 4.6: Absolute error of u(x) and v(x) for Example 4.3 by H-JM.

The absolute error plots demonstrate minimal errors, on the order of 1016, indicating
that the approximate solutions are almost identical to the exact solutions. This confirms the
outstanding accuracy and effectiveness of the H-JM method for solving the system of NVIEs-II
in this example.

Example 4.4. Consider the following system of NVIEs-II:

u(x) =e* —sinh(2x) + [; (u?(t) +0*(t))dt, (4.29)
v(x) = e +1—cosh(2x) + [ (u(t) — v*(t))dt, '
with exact solution:
u(x) =e*,
v(x) =e " .
When we use the algorithm of the new technique H-JM on Equation (4.29), we get:
S i(x) = ¢ — sinh(2x) +/ (L) + o3,
=0 0 Y=o =0 (4.30)
Y 0:(x) = e+ 1 cosh(2) +/ (X2 — L o3(1) ).
i—0 0 Yi=o i=0
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up =1,
0 = 1,
X
Uy = xDy (e" — sinh(2x) +/ (1+ 1)dt) =
0 x=
X
v1 = xDy (e”‘ + 1 — cosh(2x) —I—/ (1- 1)dt> =
2
_ 2 x _1)\2 — X
Uy = Dx(e sinh(2x) +/ 1—|—t (1—1t) )dt)x:O ST
2
vy = —D (e ¥+ 1 — cosh(2x) —|—/ (1+t)*—(1- t)2)dt> = %,
X= .
2, 2, x3
u3:—D (e — sinh(2x) +/ 1+t+2') +(1_t+i) )dt>x:o:§’
2 tZ x3
03:—D (e ¥4+ 1 — cosh(2x) +/ 1+t+ )2 — (1—t+—)2)dt> =
2! 2! x 3!
_ X hx) + [ ((1 Pria F_Payg) -2
u4—— x(e — sin x—l—/ e D +3,)+( —t+j—§))t>x:0_a,
vy = —D4( +1—Cosh(2x)—|—/ (A+t+5 £ + 3) - (1—t+t2—t3)2)dt) =
BT 0 3! 2! 3l x=0 A4l
The general recurrence relations are:
i+l i1 x x , i ) i ) xitl
(1) = DY (e — sinh (2 /( (¢ ()dt) =
ui1(x) S e* —sinh(2x) 4+ ; ];]u]( )+];]v]() o~ G1T)!
vi1(x) = x pitl (e*x + 1 — cosh(2x) + /x <Zi:u2(t) — i#(t))dt) = (_1)i+1.7
RGNS DT 0o N\ =" =0 (i+1)
The approximate solution is therefore:
2 B3 44 00 i
w(x) =1+x+ 5+ 5+ +--~=;)i—!,
i=
2 43 x4 o0 i
1=
3 : : QR : :
—©— Exact u(x) = exp(x) —— Exact v(x) = exp(-x)
=@ Approximate u(x) (n=10) D 09 = Approximate v(x) (n=10)
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Figure 4.7: The exact and numerical solutions of #(x) and v(x) for Example 4.4by H-JM.

Figure 4.7 represents the comparison of the exact and numerical solutions using H-J]M
with ten terms of the Maclaurin series expansion. The approximate solutions are in agreement



Comparative study of methods for nonlinear Volterra equations 281

with the exact solutions perfectly over the interval x € [0, 1], confirming the method’s strong
convergence.

%108 108
‘ —@— Error |Exact - Approximate] for u(x) ‘ ‘ —— Error |Exact - Approximate] for v(x) ‘

Error

X X

Figure 4.8: Absolute error of u(x) and v(x) for Example 4.4 by H-JM.

The absolute error plots confirm the very high accuracy of H-JM, as the maximum errors
for both u(x) and v(x) are extremely small, approaching 10~%, demonstrating the capability
of the method to provide highly accurate results for solving NVIEs-II.

4.3 Application of the CNPSFM

Example 4.5. Consider the following nonlinear system of Volterra integral equations of the
second kind:

u(x) = cosh(x) —x + [y (u?(t) —0%(t))dt, (431)
v(x) = sinh(x) — 3 sinh®(x) + f; (x — £) (u2(t) + 02(t))dt, '
which has the exact solution:
u(x) = cosh(x),
v(x) = sinh(x)
6 —©6— Exact solution u(x) ‘ ‘ 12 —O6— Exact solution v(x)
= 8 = Numerical solution u(x) P — 8 — Numerical solution v(x)
N
08r
§ 06
04 r
02r
0er :
1 0 0.2 0.4 0.6 0.8 1

X X

Figure 4.9: The exact and numerical solutions of u(x) and v(x) for Example 4.5 by CNPSFM.

The graphical illustration in Figure 4.9 clearly shows the high agreement between the exact
solutions u(x) = cosh(x) and v(x) = sinh(x), and the corresponding approximate solutions
obtained by the CNPSEM approach. The approximate solutions closely track the exact curves
across the entire domain x € [0, 1], with only minor deviations visible at the upper boundary,
reflecting the maximum errors obtained in the numerical computations.
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Figure 4.10: Absolute error of u(x) and v(x) for Example 4.5 by CNPSEM.

The absolute error plots shown in Figure 4.10 further demonstrate the accuracy of the
CNPSFM method. The maximum absolute error for u(x) is approximately 2.26 x 103 and for
v(x) it is approximately 2.38 x 10~3. These small errors confirm the effectiveness of CNPSFM
in solving the system of NVIEs-II with remarkable precision.

Example 4.6. Consider the following system of NVIEs-II:

{u(x) = ¢ —sinh(2x) + [ (u3(t) + 02(t))dt, (4.32)

v(x) = e +1—cosh(2x) + [ (u(t) — v*(t))dt,

which has the exact solution:

3 T T 1e
—©— Exact solution u(x) 0 —6— Exact solution v(x)
— 8 — Numerical solution u(x) 7 — 8 — Numerical solution v(x)
0 0.9
/
)
251
’ 0.8
= 7 2%
g >
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0 02 0.4 06 0.8 1 0 02 0.4 06 0.8 1
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Figure 4.11: The exact and numerical solutions of #(x) and v(x) for Example 4.6by CNPSFM.

Figure 4.11 illustrates the comparative behavior of the exact and approximate solutions for
the functions u(x) and v(x) in Example 4.6 using the CNPSFM. While the method maintains a
reasonable level of accuracy for lower values of x, a noticeable deviation occurs as x increases.
This is particularly evident in the solution for u(x), which exhibits greater divergence due
to the rapid exponential growth of the exact solution. Nonetheless, the method successfully
captures the overall behavior and trend of the solution profiles.
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Figure 4.12: Absolute error of u(x) and v(x) for Example 4.6by CNPSFM.

The absolute error plots shown in Figure 4.12 further demonstrate the numerical accuracy
of the CNPSFM method. The maximum absolute error for u(x) is approximately 1.70 x
10!, while for v(x) it is approximately 1.29 x 10~1. Although the errors increase gradually
towards the end of the interval, the overall magnitudes remain reasonably low, confirming
the effectiveness of CNPSFM in providing reliable approximations for the system of NVIEs-
II. The method performs particularly well near the initial region, highlighting its strength in
capturing smooth solution behaviors.

5 Comparative analysis of methods

5.1 Consolidated numerical results tables

Following the presentation of analytical and numerical solutions alongside their correspond-
ing graphical representations for each example, Tables 5.1 and 5.2 (for Example 4.1) and Ta-
bles 5.3 and 5.4 (for Example 4.2) provide a comprehensive, side-by-side comparison of the
performance of the three methods (MADM-II, H-JM, CNPSEM) in approximating both func-
tions u(x) and v(x) over the domain [0, 1]. These tables display exact and approximate values
concurrently, along with a detailed analysis of the absolute error for each method at discrete
x-values. This unified comparison enables a clear assessment of the accuracy and reliability
of each method across the full domain of x and for both studied examples.
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Table 5.1: Comparison of exact and numerical solutions for Example 4.1 by MADM-II, H-]M,

and CNPSFM.
X Uexact U Approximate Uexact U Approximate
MADM-II. H-]M CNPSFM MADM-II H-]M CNPSFM
0 1 1 1 1 0 0 0 0
0.1 | 1.005 1.005 1.005 1.005 0.10017 | 0.10017  0.10017  0.10015
0.2 | 1.0201 1.0201 1.0201 1.0201 0.20134 | 0.20134 0.20134  0.20127
0.3 | 1.0453 1.0453 1.0453  1.0453 | 0.30452 | 0.30452  0.30452  0.30437
0.4 | 1.0811 1.0811 1.0811  1.0811 | 0.41075 | 0.41075  0.41075  0.41047
0.5 | 1.1276 1.1276 1.1276 1.1277 0.5211 0.5211 0.5211 0.52064
0.6 | 1.1855 1.1855 1.1855  1.1856 | 0.63665 | 0.63665  0.63665  0.63597
0.7 | 1.2552 1.2552 12552 1.2555 | 0.75858 | 0.75858  0.75858  0.75761
0.8 | 1.3374 1.3374 13374  1.3381 | 0.88811 | 0.88811  0.88811  0.88676
0.9 | 1.4331 1.4331 1.4331 1.4344 1.0265 1.0265 1.0265 1.0247
1 | 1.5431 1.5431 1.5431  1.5453 1.1752 1.1752 1.1752 1.1728

Table 5.1 shows that all three methods give approximations that are very close to the exact
solution, especially for the u(x) component, where the errors are very small. There are small
differences in the v(x) component visible as x increases, especially with the CNPSFM method.
However, all methods are stable and consistent across the domain.

Table 5.2: Comparison of absolute errors for Example 4.1 by MADM-II, H-JM, and CNPSFM.

X |uexact — uapprox’ ’vexact — Z)approx|

MADM-II H-M CNPSFM MADM-II H-M CNPSFM
0 |0 0 0 0 0 0
0.1 | 2.2204 x 10716 | 2.2204 x 10716 | 1.8583 x 10~7 | 2.7756 x 10~ | 2.7756 x 10~ | 1.6689 x 107>
0210 0 1.926 x 107 | 1.1102 x 10716 | 1.1102 x 10716 | 6.7455 x 10~°
03] 1.1102 x 107 | 0 9.1407 x 107 | 1.0547 x 107> | 0 0.00015454
0.4 | 35083 x10°14 |0 29575 x 1075 | 1.9651 x 10~ | 0 0.00028194
0.5 | 51026 x 1013 | 0 7.6736 x 107> | 2.1005 x 10713 | 0 0.00045655
0.6 | 45532 x 10712 | 0 0.00017317 2.2204 x 10712 | 0 0.00068389
0.7 | 3.8974 x 10711 | 2.2204 x 10~1¢ | 0.00035998 1.5594 x 10712 | 2.2204 x 10~ | 0.00097716
0.8 | 1.4397 x 10710 | 2.2204 x 1016 | 0.00068616 8.8555 x 10712 | 1.1102 x 1016 | 0.0012481
0.9 | 59225 x 10710 | 0 0.0012645 4.0978 x 1011 | 2.2204 x 10716 | 0.0018106
1.0 | 2.0992 x 1072 | 0 0.0022592 1.6136 x 10710 | 2.2204 x 10~1¢ | 0.0023778

The error analysis reveals that both MADM-II and H-JM exhibit very low absolute errors
for u(x), typically less than machine precision. The CNPSFM method has slightly larger
errors, but it is also very accurate, especially for smaller x. For v(x), the errors again have
similar trends, with CNPSEM showing relatively larger errors for larger x, but still in the
acceptable range for engineering practice.
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Table 5.3: Comparison of exact and numerical solutions for Example 3.2 by MADM-II, H-]M,

and CNPSFM.
X Uexact uApproximate Uexact vApproximate
MADM-II H-JM CNPSFM MADM-II H-JM CNPSFM
0 1 1 1 1 1 1 1 1
0.1 | 1.1052 1.1052 1.1052 1.1059 090484 | 090484 0.90484 0.90498
0.2 | 1.2214 1.2214 1.2214 1.2232 0.81873 0.81873  0.81873  0.81932
0.3 | 1.3499 1.3499 1.3499 1.3533 0.74082 | 0.74082  0.74082  0.74229
04 | 1.4918 1.4918 1.4918 1.4978 0.67032 | 0.67032  0.67032  0.67334
0.5 | 1.6487 1.6487 1.6487 1.6587 0.60653 | 0.60653  0.60653  0.61222
0.6 | 1.8221 1.8220 1.8221 1.8388 0.54881 0.54881  0.54881  0.55918
0.7 | 2.0138 2.0136 2.0138 2.0421 0.49659 | 0.49659  0.49659  0.51538
0.8 | 2.2255 2.2251 2.2255 2.2749 0.44933 0.44933  0.44933  0.48385
0.9 | 2.4596 2.4588 2.4596 2.5488 0.40657 | 0.40657  0.40657 0.47183
1.0 | 2.7183 2.7167 2.7183 2.8882 0.36788 | 0.36788  0.36788  0.49683

Table 5.3 shows that all methods approximate the exact solutions accurately for smaller
x values. As x increases, some deviation appears, particularly with the CNPSFM method.
Nonetheless, all methods demonstrate reliable performance across the domain.

Table 5.4: Comparison of absolute errors for Example 3.2 by MADM-II, H-JM, and CNPSFM.

X |uexact - uapprox| |Uexact - Uapprox|

MADM-II H-M CNPSEM | MADM-II H-]M CNPSEM
0 |0 0 0 0 0 0
0.1 | 1.409 x 1072 | 4.4409 x 10~1¢ | 0.0007682 | 1.3693 x 10~? | 1.1102 x 10~'® | 0.00013918
0.2 | 9.1494 x 1078 | 6.6613 x 1071¢ | 0.0018361 | 8.641 x 1078 | 55511 x 10~ | 0.00059078
0.3 | 1.0576 x 107¢ | 4.5741 x 10~1% | 0.0034347 | 9.7068 x 10~7 | 4.3188 x 10~ '* | 0.0014698
0.4 | 6.031 x 107 | 1.0871 x 10712 | 0.0059353 | 5.3794 x 10~° | 1.0166 x 1012 | 0.0030158
0.5 | 2.3354 x 10~ | 1.2763 x 10~ | 0.0099783 | 2.0243 x 107° | 1.1742 x 10~1! | 0.0056889
0.6 | 7.08 x 107> 9.5652 x 10711 | 0.016724 | 5.9636 x 1072 | 8.6545 x 10~1! | 0.010371
0.7 | 0.00018129 5.259 x 10719 | 0.028382 | 0.00014839 4.6795 x 10719 | 0.018796
0.8 | 0.00041026 2.3048 x 1077 | 0.049382 | 0.0003263 2.0168 x 109 | 0.034522
0.9 | 0.00084486 8.4948 x 1077 | 0.089194 | 0.00065291 7.3103 x 10~° | 0.065259
1 | 0.0016152 2.7313 x 1078 | 0.16987 0.0012128 2.3114 x 108 | 0.12895

As shown in Table 5.4, the error analysis shows that both MADM-II and H-JM methods
give extremely small absolute errors for u(x) and v(x), remaining close to machine precision
for most values of x. Observed errors in the CNPSFM method show larger errors as the
values of x increase, but still give acceptable accuracy levels for the types of computational
applications that would be typically conducted.

5.2 Comparative performance analysis

Building upon the systematically presented numerical results in Tables 5.1-5.4 and Figures 1-
12, this section provides a comprehensive comparative analysis of three numerical methods:
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the MADM, the H-JM, and the CNPSFM, for solving systems of NVIEs-II. The analysis is
structured into two complementary components:

(i) a systematic presentation of numerical performance through tables and figures, and

(ii) an in-depth analytical discussion highlighting convergence behavior, accuracy, stability,
and computational efficiency.

5.2.1 Numerical results summary

Two benchmark examples were employed to evaluate the three methods. Absolute errors were
computed and compared against exact analytical solutions. Tables 5.1-5.4 and Figures 1-12
illustrate the numerical behavior across the domain [0, 1]:

e MADM: Achieved absolute errors ranging from 10716 to 2.0992 x 107, exhibiting excel-
lent agreement up to x = 0.8, followed by mild error accumulation near x = 1.

* H-JM: Consistently maintained machine-precision accuracy (10~1°-1078), with exact
agreement between numerical and analytical solutions across the entire interval.

e CNPSFM: Produced moderate accuracy (1073~10~!) with relatively stable performance
in the interior domain; however, significant endpoint deviations were observed, reaching
0.16987 in Example 2.

5.2.2 Analytical discussion

Accuracy and error propagation

* MADM: Near-machine-precision accuracy for x < 0.7; small residual errors arise near
the endpoint due to truncation of higher-order Adomian terms (Figures 1-2).

¢ H-JM: Exhibits uniformly negligible errors across all nodes (Tables 5.2-5.4). Its Maclaurin-
based recursive structure ensures exact agreement even for systems exhibiting exponen-
tial growth (Figures 5-7).

¢ CNPSFM: Acceptable accuracy near x = 0; however, increasing boundary errors indicate
limited robustness for solutions with sharp gradients (Figures 10-12).

Convergence behavior
* MADM: Demonstrates rapid initial convergence with slight stagnation near x = 1.

¢ H-JM: Achieves machine-precision convergence with relatively few terms, confirming
global stability.

¢ CNPSFM: Converges satisfactorily for smooth solutions (e.g., hyperbolic cosine func-
tions); however, performance degrades when solutions exhibit steep variations.



Comparative study of methods for nonlinear Volterra equations 287

5.2.3 Stability and computational efficiency

Table 5.5 presents a qualitative comparison of stability and computational characteristics:

Table 5.5: Stability and computational efficiency comparison.

Criterion MADM-II H-]M CNPSFM
Endpoint stability Moderate  Excellent Limited
Computational cost Low Moderate High

Handling nonlinearity =~ Efficient =~ Exceptional = Variable

Key observations:
¢ H-JM avoids numerical integration entirely, thereby minimizing error propagation;

* MADM provides an optimal balance between computational efficiency and acceptable
precision;

¢ CNPSFM requires refined meshes to mitigate boundary artifacts.

5.24 Comparative insights from benchmark examples

¢ Example 1: H-JM achieved near-zero errors; MADM produced negligible errors (~
10~%); CNPSFM maintained errors within ~ 1073.

* Example 2: H-JM and MADM preserved excellent accuracy (10~6~10-8); CNPSFM er-
rors increased to 10~!, confirming instability for solutions with steep gradients.
5.2.5 Guidelines for method selection

This comparative study demonstrates that no single method universally dominates; rather,
the optimal choice depends on problem-specific characteristics:

* For absolute accuracy and global stability — H-JM represents the gold standard.

¢ For computational efficiency with high central-domain accuracy - MADM offers the
optimal trade-off.

¢ For smooth problems with limited variations — CNPSFM is viable, provided endpoint
refinement strategies are employed.
5.2.6 Limitations and future research directions

Despite their respective strengths, all three methods exhibit certain limitations:

* MADM: Susceptible to endpoint error accumulation.

* CNPSFM: Sensitive to boundary artifacts; requires adaptive or fractional spline enhance-
ments.

¢ Common limitation: None of the methods fully addresses singular kernels or multi-
dimensional extensions.
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Proposed future research directions:

1. Development of hybrid MADM/H-JM frameworks combining computational efficiency
with machine-precision accuracy;

2. Implementation of adaptive CNPSFM schemes employing variable knot placement and
fractional spline bases to reduce endpoint instability;

3. Design of kernel-optimized algorithms for higher-dimensional NVIEs-II systems.

5.2.7 Summary

This study reveals a clear performance hierarchy among the three methods:

¢ H-JM establishes itself as the benchmark approach, offering unmatched global accuracy
and numerical stability.

¢ MADM provides an optimal balance between computational efficiency and precision,
rendering it particularly suitable for engineering applications requiring rapid computa-
tion.

¢ CNPSFM, while exhibiting lower accuracy, remains valuable for smooth systems and
serves as a foundation for future spline-based enhancements.

Ultimately, method selection should align with problem-specific characteristics including
solution smoothness, nonlinearity structure, and boundary sensitivity. The proposed hybrid
and adaptive strategies represent promising avenues for advancing the numerical treatment
of nonlinear Volterra integral systems.

6 Conclusion

This study presents a comprehensive comparative analysis of three innovative numerical tech-
niques for solving systems of NVIEs-II: the MADM, the H-JM, and the CNPSFM. Each method
was rigorously evaluated using benchmark problems with known exact solutions, and their
accuracy, convergence rates, and numerical stability were systematically investigated.

Both theoretical analysis and numerical experiments confirmed the convergence behav-
ior of all three methods; however, the computational results revealed distinct performance
characteristics for each approach:

¢ MADM and H-JM: Both methods demonstrated clear advantages in achieving superior
numerical accuracy with minimal errors, often approaching machine precision, as evi-
denced in Tables 5.2 and 5.4. MADM exhibited rapid convergence, while H-JM provided
exceptional numerical stability and straightforward implementation through a simple
recursive Maclaurin series framework. These attributes render both methods highly
suitable for applications demanding high analytical precision and reliability, such as
quantum mechanical systems and electromagnetic modeling.

¢ CNPSFM: While this method displayed robust numerical stability and accurately cap-
tured the overall solution behavior, the numerical results (Tables 5.1-5.3, Figures 9-12)
indicated that it produced larger errors relative to the other two methods, particularly
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for larger values of the independent variable x. Nevertheless, CNPSFM remains appro-
priate for applications prioritizing smooth local approximations, such as viscoelasticity
problems.

Based on these findings, the following practical recommendations are offered:

e MADM is ideal for problems requiring high precision and rapid convergence in the
initial stages (e.g., population dynamics models);

e H-JM is well-suited for scenarios demanding stable, computationally efficient imple-
mentations with minimal overhead,;

e CNPSFM is viable for problems exhibiting smooth solution behavior, where moderate
accuracy trade-offs are acceptable.

Although all three methods demonstrate strong performance across diverse test cases,
challenges persist, particularly when addressing systems with singular kernels or requiring
long-time integration. Consequently, future research should focus on extending these meth-
ods to more complex configurations, including systems with delay terms, integro-differential
formulations, or hybrid computational frameworks that integrate machine learning techniques
for adaptive refinement and enhanced efficiency.

In conclusion, this study provides both theoretical insights and evidence-based practical
guidance for selecting robust and appropriate numerical solvers for NVIEs-II, thereby rein-
forcing the computational viability of these approaches across a broad spectrum of scientific
and engineering applications.
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