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Abstract. In this study, we acquired spectral results for the diffusion operator under
higher-order approximations. We reconstruct the well-known techniques and derive
the essential results for the presented problem. The spectral results for the diffusion
operator with high-order approximations were evaluated, focusing on solutions in the
Paley-Wiener space. Additionally, we consider theorems that involve solutions belong-
ing to the Paley-Wiener space and the applications of Shannon’s sampling theorem. We
also examine and evaluate the diffusion operator under more general separable bound-
ary conditions.
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1 Introduction

In this study, we consider the following diffusion equation

−y′′ + [q (x) + 2λp (x)] y = λ2y, x ∈ [0, π] , (1.1)

where the function q (x) ∈ L2 [0, π], p (x) ∈ L2 [0, π]. Note that several spectral problems have
been extensively analyzed for the diffusion operator in [1, 2, 10, 11].

We focus on the following problem

−y′′ + [q (x) + 2λp (x)] y = λ2y, (1.2)

y (0) = 1 , y′ (0) = −h, (1.3)

where h is a finite number. Let us indicate by φ (x, λ) the solution of (1.2) satisfying the initial
conditions (1.3). Following [10], let

φ (x, λ) = cos [λx − α̃ (x)] +
∫ x

0
M (x, τ) cos λτ dτ +

∫ x

0
N (x, τ) sin λτ dτ, (1.4)
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where

α̃ (x) = x.p (0) + 2
∫ x

0
{M (ζ, ζ) sin α̃ (ζ)− N (ζ, ζ) cos α̃ (ζ)} dζ,

q (x) = −p 2 (x) + 2
d

dx
{M (x, x) cos α̃ (x) + N (x, x) sin α̃ (x)} ,

M (0, 0) = h , N (x, 0) = 0,
∂M (x, τ)

∂τ

∣∣∣∣
τ=0

= 0, α̃ (x) =
∫ x

0
p (τ) dτ,

(1.5)

and the nth eigenvalue is

λn = n + c0 +
c1

n
+

c1, n

n
, (1.6)

where

c 0 =
1
π

∫ π

0
p (x) dx , ∑

n
| c 1 , n|2 < ∞ ,

c 1 =
1
π

(
h + H +

1
2

∫ π

0

[
q (x) + p2 (x)

]
dx

)
,

(1.7)

and H is a finite number.
In this work, we focus on and evaluate the diffusion equation under more general separable
boundary conditions

−ψ′′ + [q (x) + 2λp (x)] ψ = λ2ψ, x ∈ [0, π] ,

a 11ψ (0, λ)− a 12ψ′ (0, λ) = 0,

a 21ψ (π, λ) + a 22ψ′ (π, λ) = 0.
(1.8)

where a 2
11 + a 2

12 , 0 , a 2
21 + a 2

22 , 0. Also, let λ = µ2 and ψ
(
x, µ2) denotes the solution of the

following initial value problem

−ψ′′ +
[
q (x) + 2µ2 p (x)

]
ψ = µ4ψ,

ψ
(
0, µ2) = a 12, ψ′ (0, µ2) = a 11.

Furthermore, the eigenvalues of (1.8) are the squares of the zeroes of the boundary function
B (µ) ,

B (µ) := a 21ψ
(
π, µ2)+ a 22ψ′ (π, µ2) .

Additionally, the mentioned boundary function is an entire function that belongs to µ in the
case of Dirichlet. This function is of type π and order 1. In addition, it belongs to the Paley-
Wiener space in the following form

PWπ =
{

f is entire, | f (µ)| ⩽ c exp [π | Im µ |] , f ∈ L2 (R)
}

.

2 Main results and discussions under high-order approximations

Following the work in [10], we define the function y(x, µ2) as:

y
(
x, µ2) = cos

[
µ2x − α̃ (x)

]
+

∫ x

0
M (x, t) cos

(
µ2t

)
dt +

∫ x

0
N (x, t) sin

(
µ2t

)
dt,

We now state the following results:
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Theorem 2.1. Let
v[0]1 (x, µ) = y (x, µ) ,

v[0]2 (x, µ) =

x∫
0

{
M (x, t) cos

(
µ2t

)
+ N (x, t) sin

(
µ2t

)}
dt −

x∫
0

{
N (x, t) sin

(
µ2t

)}
dt, (2.1)

φ0 (x, µ) = cos
[
µ2x − α̃ (x)

]
,

and

φn (x, µ) =

x∫
0

{
M (x, t) cos

(
µ2t

)
+ N (x, t) sin

(
µ2t

)}
φn−1 (t, µ) dt,

v[n]1 (x, µ) = v[n−1]
1 (x, µ)− φn−1 (x, µ) ,

v[n]2 (x, µ) = v[n−1]
2 (x, µ)−

x∫
0

M (x, t) cos
(
µ2t

)
φn−1 (t, µ)dt, (2.2)

B̃[n] (x, µ) = a21v[n]1 (x, µ) + a22v[n]2 (x, µ) ,

for n ≥ 1. Where upon

φn (x, µ) , v[n]1 (x, µ) , v[n]2 (x, µ) , B̃[n] (x, µ) ∈ PWx,

for n ≥ 1. Moreover, we have the subsequent estimates,

|φn (x, µ)| ≤ (c6)
nex|Imµ2|,∣∣∣v[n]1 (x, µ)

∣∣∣ ≤ c3(c6)
nex|Imµ2|,∣∣∣v[n]2 (x, µ)

∣∣∣ ≤ c4(c6)
nex|Imµ2|,∣∣∣B̃[n] (x, µ)

∣∣∣ ≤ c5(c6)
nex|Imµ2|,

(2.3)

where

c1 =

π∫
0

max
0≤x≤π

|M (x, t)| dt, c2 =

π∫
0

max
0≤x≤π

|N (x, t)| dt,

c3 = exp (c1 + c0c2) , c4 = c1c3, c5 = |a21| c3 + |a22| c4, c6 = c1 + c0c2.

Proof. It is obvious that

v[n]1 (x, µ) = φn (x, µ) +

x∫
0

{
M (x, t) cos

(
µ2t

)
+ N (x, t) sin

(
µ2t

)}
v[n]1 (t, µ) dt,

v[n]2 (x, µ) =

x∫
0

M (x, t) cos
(
µ2t

)
v[n]1 (t, µ)dt,

(2.4)

also, the proof is performed by induction on n.



Spectral problems of a diffusion operator under high-order approximations 199

We would like to remind that we will use the following estimates [5] to prove the estimates
(2.3) for n = 0,

|cos u| ≤ e | Imu | , |sin u| ≤ c0e | Imu | , (2.5)

where c0 is an arbitrary constant (we could get c0 = 1.72). By means of this approach we
obtain,

|φ0 (x, µ)| ≤ e x| Imµ2 |,

and from (2.4), we have

∣∣∣v[0]1 (x, µ)
∣∣∣ ≤ |φ0 (x, µ)|+

∣∣∣∣∣∣
x∫

0

{
M (x, t) cos

(
µ2t

)
+ N (x, t) sin

(
µ2t

)}
v[0]1 (t, µ) dt

∣∣∣∣∣∣
≤ |φ0 (x, µ)|+

x∫
0

|M (x, t)|
∣∣cos

(
µ2t

)∣∣ ∣∣∣v[0]1 (t, µ)
∣∣∣ dt

+

x∫
0

|N (x, t)|
∣∣sin

(
µ2t

)∣∣ ∣∣∣v[0]1 (t, µ)
∣∣∣ dt

≤ e x| Imµ2 | + e x| Imµ2 |
 x∫

0

|M (x, t)| e−t| Imµ2 |
∣∣∣v[0]1 (t, µ)

∣∣∣ dt

+c0

x∫
0

|N (x, t)| e−t| Imµ2 |
∣∣∣v[0]1 (t, µ)

∣∣∣ dt

 ,

from which we get

∣∣∣v[0]1 (x, µ)
∣∣∣ e−x| Imµ2 | ≤ 1 +

x∫
0

[|M (x, t)|+ c0 |N (x, t)|] e−t| Imµ2 |
∣∣∣v[0]1 (t, µ)

∣∣∣ dt,

and using Gronwall’s Lemma, yields

∣∣∣v[0]1 (x, µ)
∣∣∣ ≤ e

π∫
0

max
0≤x≤π

(|M(x,t)|)dt+c 0

π∫
0

max
0≤x≤π

(|N(x,t)|)dt
e x| Imµ2 |,

≤ c3e x| Imµ2 |,

and ∣∣∣v[0]2 (x, µ)
∣∣∣ = x∫

0

|M (x, t)|
∣∣cos

(
µ2t

)∣∣ ∣∣∣v[0]1 (t, µ)
∣∣∣dt,

≤ e x| Imµ2 |c3

π∫
0

max
0≤x≤π

(|M (x, t)|) dt,

≤ c4e x| Imµ2 |,

Furthermore, ∣∣∣B̃[0] (x, µ)
∣∣∣ ≤ |a21|

∣∣∣v[0]1 (x, µ)
∣∣∣+ |a22|

∣∣∣v[0]2 (x, µ)
∣∣∣ ,
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≤ c5e x| Imµ2 |.

Therefor, the estimates of (2.3) are true for n = 0.
In this part of our work, we suppose the estimates (2.3) are true for n − 1, and then we

prove for the value of n. From equalities (2.2), we have

|φn (x, µ)| ≤
x∫

0

|M (x, t)|
∣∣cos

(
µ2t

)∣∣ |φn−1 (t, µ)| dt

+

x∫
0

|N (x, t)|
∣∣sin

(
µ2t

)∣∣ |φn−1 (t, µ)| dt,

≤
x∫

0

{|M (x, t)|+ c0 |N (x, t)|} e (x−t)| Imµ2 |(c6)
n−1e t| Imµ2 |dt,

≤ (c6)
ne x| Imµ2 |,

and from (2.4), we acquire

∣∣∣v[n]1 (x, µ)
∣∣∣ ≤ |φn (x, µ)|+

x∫
0

|M (x, t)|
∣∣cos

(
µ2t

)∣∣ ∣∣∣v[n]1 (t, µ)
∣∣∣ dt,

+

x∫
0

|N (x, t)|
∣∣sin

(
µ2t

)∣∣ ∣∣∣v[n]1 (t, µ)
∣∣∣ dt,

≤ (c6)
ne x| Imµ2 |+ e x| Imµ2 |

 x∫
0

{|M (x, t)|+ c0 |N (x, t)|} e−t| Imµ2 |
∣∣∣v[n]1 (t, µ)

∣∣∣ dt

 ,

so that∣∣∣v[n]1 (x, µ)
∣∣∣ e−x| Imµ2 | ≤ (c6)

n +

x∫
0

{|M (x, t)|+ c0 |N (x, t)|} e−t| Imµ2 |
∣∣∣v[n]1 (t, µ)

∣∣∣ dt,

from which we get

∣∣∣v[n]1 (x, µ)
∣∣∣ ≤ (c6)

ne

π∫
0

max
0≤x≤π

(|M(x,t)|)dt+c 0

π∫
0

max
0≤x≤π

(|N(x,t)|)dt
e x| Imµ2 |,

≤ c3(c6)
ne x| Imµ2 |,

and so, ∣∣∣v[n]2 (x, µ)
∣∣∣ ≤ x∫

0

|M (x, t)|
∣∣cos

(
µ2t

)∣∣ ∣∣∣v[n]1 (t, µ)
∣∣∣dt,

≤ e x| Imµ2 |c3(c6)
n

π∫
0

max
0≤x≤π

(|M (x, t)|) dt,

≤ c4(c6)
ne x| Imµ2 |.
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Moreover, ∣∣∣B̃[n] (x, µ)
∣∣∣ ≤ |a21|

∣∣∣v[n]1 (x, µ)
∣∣∣+ |a22|

∣∣∣v[n]2 (x, µ)
∣∣∣ ,

≤ c5(c6)
ne x| Imµ2 |.

Therefor, the proof is complete. The estimates (2.3) are true for all values of n. □

Theorem 2.2. (Whittaker-Shannon-Kotel’nikov) Let f ∈ PWπ, then

f (µ) =
∞

∑
k=−∞

f (k)
sin π (µ − k)

π (µ − k)
,

where the series converges uniformly on the compact subsets of R and also in L 2
dµ [15].

3 Conclusion

In the present research, we investigated the diffusion operator in detail and derived essential
spectral results for the diffusion equation under high-order approximations. We considered a
diffusion operator under more general separable boundary conditions. We then obtained the
necessary results by modifying existing techniques for the presented problem. The applied ap-
proach is based on Shannons sampling theorem, a well-established technique in the literature.
The significant results obtained are evaluated using the Paley-Wiener spaces. The mathe-
matical framework is firmly based on spectral theory, and the proofs follow well-established
approaches to Sturm-Liouville problems. These assessments demonstrate the validity and
strength of the obtained results.
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