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Abstract. We propose and analyze a three-dimensional eco-epidemiological model in-
volving susceptible and infected prey and predators, in which the predators are sup-
plemented with a constant externally supplied food supply. The model incorporates
nonlinear disease transmission and predator feeding saturation through a generalized
Holling type II functional response. We investigate the system’s dynamics analytically
and numerically by examining the existence and stability of equilibria, as well as Hopf,
transcritical, and saddle-node bifurcations. One- and two-parameter bifurcation anal-
yses reveal rich dynamics, including limit cycles, period doubling, and chaotic oscilla-
tions. Our findings indicate that disease transmission can destabilize the system, while
the inclusion of additional food enhances stability and can suppress chaos. Further-
more, we extend the model by introducing a time-dependent optimal control variable
representing additional food supply, and derive an optimal strategy using Pontryagin’s
Maximum Principle. Numerical simulations show that optimal control effectively re-
duces disease prevalence and stabilizes population dynamics. This study highlights the
potential of ecological interventions, such as strategic food supplementation, in regu-
lating complex eco-epidemiological systems.
Keywords: Eco-epidemiology; Additional food; Optimal control; Bifurcation analysis;

Chaotic oscillations; Disease eradication.
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1 Introduction

Interactions among species play a pivotal role in shaping evolutionary and ecological dy-
namics within natural environments. In particular, predator-prey relationships have been
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extensively studied across diverse ecological systems. These interactions often involve organ-
isms and their natural adversaries, such as plant-herbivore [9], host-parasite [11], herbivore-
carnivore [31], and host-pathogen [10] relationships. predator-prey dynamics directly influ-
ence the birth rate of predators and the mortality rate of prey, and govern energy flow through
food chains. This relationship is central to the structure and stability of ecological communi-
ties, making it a fundamental topic in mathematical ecology.

The pioneering works of Lotka and Volterra independently introduced mathematical mod-
els of predator-prey interactions, revealing rhythmic population dynamics between predators
and prey [25, 39]. Since then, modeling these dynamics has attracted significant attention
from researchers [5, 12, 26, 34], leading to the development of models with various functional
responses [19] that capture the primary influence of predation on ecosystem behavior.

Parasites significantly influence the structure of food webs by altering host behavior, fit-
ness, and population abundances, thereby playing a crucial role in trophic interactions. A
pioneering effort to incorporate disease dynamics into predator-prey models was made by
Hadeler and Freedman [15], who introduced a framework in which prey populations could
become infected by parasites. They supported their model with several biological examples.
For instance, cracked skull disease has been shown to increase the susceptibility of Asian cat-
fish species (Clarias batrachus and Clarias macrocephalus) to predation [22]. Similarly, Peterson
and Page [30] reported that wolf predation on moose is more successful when the moose is
heavily infected with Echinococcus granulosus.

In recent decades, mathematical modeling has emerged as a vital tool for analyzing and
understanding the spread and control of infectious diseases, particularly when ethical or prac-
tical constraints limit experimental approaches. In such cases, modeling provides valuable
insights for effective disease management and policy development. Numerous studies have
incorporated disease dynamics into predator-prey frameworks to explore the effects of infec-
tion on ecological interactions [3,4,8,14,15,17,18,21,24,27,33,40]. While most of these models
focus on disease transmission within prey populations, a few also consider infection in preda-
tors [18, 24, 40]. A common objective across these studies is to identify strategies that often
involve predation mechanisms to suppress or eliminate disease in the prey population.

It is now widely recognized that most predators engage in complex interactions with mul-
tiple prey species, rather than relying on a single prey type [38]. Many of these predators
exhibit migratory behavior, often operating across geographical scales much larger than those
of individual prey populations. As a result, the presence of alternative prey must be consid-
ered to develop realistic and ecologically accurate predator-prey models.

Holt and Lawton [20] emphasized that the impact of generalist predators is influenced not
only by the abundance and vulnerability of primary prey, but also by the presence and den-
sity of alternative prey. Consequently, understanding the relative contributions of direct and
indirect effects in multi-species predator-prey systems is essential for accurately predicting
the dynamics of complex food webs.

The ecological roles of predators and their influence on prey-predator dynamics have long
intrigued scientists, particularly regarding their contributions to biological regulation [7, 28,
42]. Motivated by this, the present study introduces an additional prey species-assumed to
be available at a constant density-into a previously studied predator-prey model, thereby
expanding the system’s complexity.

While the dynamics of classical models involving a single predator and a single prey
are well understood, extensions that include alternative food sources provide a more realis-
tic framework. Abrams and Roth [1] discussed several theoretical models involving higher
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trophic levels. Our model incorporates an alternative prey species, aiming to capture the
dynamics of an extended predator-prey system. This approach results in a system that is
more manageable than full three-species models, yet rich enough to exhibit complex behav-
iors [6, 13].

Notable related works include Roy et al. [32], who analyzed an exploitative system involv-
ing two prey species and one predator. Spencer and Collie [35] examined a prey-predator
fish model with alternative prey in the context of harvesting, observing that when the abun-
dance of primary prey was low, predator numbers could still increase due to the availability
of alternative prey.

Similarly, Srinivasu et al. [36] developed a two-dimensional predator-prey model incor-
porating additional food sources, examining the effects of food quality on system dynamics.
Building upon this, Srinivasu and Prasad [37] applied bang-bang control theory to drive the
system toward a desired equilibrium efficiently via controlled food supplementation. Kar and
Chattopadhyay [23] also explored a harvested predator-prey system with multiple prey types,
further emphasizing the ecological and mathematical relevance of alternative food sources.
Recently, Akhter et al. [2] have explored complex dynamics of a tri-trophic food chain model
with toxicity and additional food.

In this study, we investigate a predator-prey model in which the prey population is subject
to an infectious disease, and the predator consumes both susceptible and infected prey. In
addition, the predator has access to an alternative food source, assumed to be available at
a constant density. The predator’s feeding behavior is modeled using a generalized Holling
type II functional response, where all three food sources-susceptible prey, infected prey, and
alternative food-contribute to feeding saturation. The primary aim of this work is to analyze
the influence of disease transmission on population dynamics and community structure, and
to explore how the inclusion of additional food affects the system’s stability, persistence, and
potential to suppress chaotic behavior.

In the latter part of this study, we extend the model by incorporating a time-dependent
optimal control variable representing the supply of additional food to predators. This control
framework aims to minimize the infection burden in the prey population while balancing the
cost of intervention and the sustainability of the predator population. Using Pontryagin’s
Maximum Principle, we derive necessary optimality conditions and analyze the correspond-
ing state and adjoint systems. Numerical simulations confirm that the optimal control strategy
not only suppresses infection effectively but also stabilizes the overall population dynamics.
This highlights the potential of ecological resource management as a viable tool for disease
mitigation in complex predator-prey-infection systems.

2 Model formulation

The primary objective of this study is to investigate the dynamic behavior of a biological
system involving disease transmission in a prey population, where predators feed on both
susceptible and infected prey. Additionally, the predators are supplemented with an external
constant food source.

We construct a predator-prey model in which the prey population is divided into two
subgroups: susceptible prey (S) and infected prey (I). The predator population is denoted by
P. We assume that the susceptible prey grow logistically, whereas the infected prey do not
reproduce. Disease transmission among prey follows a Holling type II functional response
and occurs at a rate β. Predators are assumed to be immune to the infection.
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Predators consume both susceptible and infected prey, but at different rates, denoted by α1

and α2, respectively. Following the strategy of Srinivasu et al. [36], we assume that the preda-
tor’s total intake also includes an externally supplied, constant quantity of additional food
A. We consider a scenario of steady provisioning, akin to a management practice in which
rangers or farmers supply a fixed amount of food daily, ensuring that predators always have
access to the same level of supplementary food. Introducing a dynamic additional food sup-
ply would require formulating an additional differential equation for the food itself, thereby
increasing the system’s dimensionality and mathematical complexity. To avoid such compli-
cations, we assume that further food is supplied at a constant rate. The combined intake from
all food sources-susceptible prey, infected prey, and extra food is assumed to saturate the
predator’s consumption rate according to a generalized Holling type II functional response.

For analytical simplicity, we assume the additional food supply A remains constant over
time and exclude it from dynamic modeling. This allows us to focus on how a fixed external
resource influences the overall system dynamics.

The model is governed by the following system of ordinary differential equations:

dS
dt

= aS − bS2 − cSI − βSI
δ + S

− α1SP
1 + γ1S + γ2 I + ληA

,

dI
dt

=
βSI

δ + S
− α2 IP

1 + γ1S + γ2 I + ληA
− µI,

dP
dt

=
(e1α1S + e2α2 I + e3ηA)P

1 + γ1S + γ2 I + ληA
− mP.

(2.1)

System (2.1) shall be investigated with the initial values: S(0) > 0, I(0) > 0, P(0) > 0. The
parameters and their interpretations are given in the Table 2.1.

Table 2.1: Description of parameters used in model (2.1).

Parameters Description
a intrinsic growth rate of the susceptible prey
b intra-specific competition rate among susceptible prey
c interspecific competition between susceptible and infected prey
β disease transmission rate among prey
δ half-saturation constant for disease transmission

α1, α2 predation rates on susceptible and infected prey
γ1, γ2 parameters representing prey interference or handling times
λ, η scaling factors for the effect of additional food
A constant density of additional food provided externally

3 Preliminary results

3.1 Boundedness

Due to resource limitations in nature, no species can grow indefinitely. Therefore, it is impor-
tant to demonstrate that the solutions of our model are bounded, ensuring biological feasibil-
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ity.

Lemma 3.1. All the solutions of the system (2.1) initiate in R3
+ are uniformly bounded.

Proof. Let q be an arbitrary positive constant such that 0 < q ≤ min{µ, m}. Define the total
population function W = S + I + P. Taking the derivative with respect to time and using the
system equations, we obtain:

dW
dt

=
dS
dt

+
dI
dt

+
dP
dt

= aS − bS2 − cSI + (e1 − 1)
α1SP

1 + γ1S + γ2 I + δηA
+ (e2 − 1)

α2 IP
1 + γ1S + γ2 I + δηA

+
e3ηA

1 + γ1S + γ2 I + δηA
− µI − mP

⇒ dW
dt

≤ (aS − bS2 − cSI − µI − mP),
where 0 < e1, e2, e3 ≤ 1.

⇒ dW
dt

+ qW ≤ aS
(

1 − bS
a

+
q
a

)
+ qW + ηA

⇒ dW
dt

+ qW ≤ aS
(

1 − bS
a

+
q
a

)
+ ηA − (µ − q)I − (m − q)P

⇒ dW
dt

+ qW ≤ aS
(

1 − bS
a

+
q
a

)
+ ηA, since we have considered 0 < q ≤ min{µ, m}.

≤ b
[ a

b

(
1 +

q
a

)
S − S2

]
+ ηA

≤ b

[(
a + q

2b

)2

−
(

S − a + q
2b

)2
]
+ ηA

≤ (a + q)2

4b
+ ηA.

Applying the theory of differential inequality [16], we obtain

0 < W(S, I, P) ≤ (a + q)2

4b
+ ηA + e−qt

[
W(S(0), I(0), P(0))−

(
(a + q)2

4b
+ ηA

)]
.

For t → ∞ , 0 < W ≤ (a + q)2

4b
+ ηA. Hence, the system is bounded. □

3.2 Permanence

From a biological standpoint, permanence ensures the long-term survival of all species re-
gardless of initial population sizes. Mathematically, it implies that all population variables
remain strictly positive over time and do not approach zero asymptotically.
Dissipativeness: From Lemma 3.1, we observe that the linear sum of the state variables (i.e.
S + I + P) is bounded above. Without loss of generality we can assume that S + I + P ≤ M,
where M > 0 is a real constant. Therefore, each component (state variable) of the system is
bounded above i.e. S, I, P ≤ M. Hence, the system (2.1) is dissipative.

Permanence: From the system (2.1), we can easily obtain the following Kolmogorov type
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inequation
dS
dt

≥ S
(

a − bS − cI − β

δ
I − α1P

)
,

dI
dt

≥ I
(

βS
δ + M

− α2P − µ

)
,

dP
dt

≥ P
(

e1α1S
(1 + γ1M + γ2M + ληA)

− m
)

.

(3.1)

Let (w1, w2, w3) be the positive root of the system of the equation

a − bS − cI − β

δ
I − α1P = 0

βS
δ + M

− α2P − µ = 0
e1α1S

(1 + γ1M + γ2M + ληA)
− m = 0.

(3.2)

Using the standard comparison theorem [16], we observe that the above inequality (3.1) im-
plies

lim
t→∞

inf S(t) ≥ w1, lim
t→∞

inf I(t) ≥ w2, lim
t→∞

inf P(t) ≥ w3

with

w1 =
m(1 + Aηλ + γ1M + γ2M)

α1e1
,

w2 =
δ(aα2 + α1µ)

α2(β + cδ)
− δm(α1β + α2bδ + α2bM)(1 + Aηλ + γ1M + γ2M)

α1α2e1(β + cδ)(δ + M)
,

w3 =
βm(1 + Aηλ + γ1M + γ2M)

α1α2e1(δ + M)
− µ

α2
.

Lemma 3.2. The system (2.1) is permanent i.e., lim
t→∞

inf S(t) ≥ w1, lim
t→∞

inf I(t) ≥ w2, lim
t→∞

inf P(t) ≥

w3 if δ(aα2 + α1µ) >
δm(α1β + α2bδ + α2bM)(1 + Aηλ + γ1M + γ2M)

α1e1(δ + M)
and

βm(1 + Aηλ + γ1M + γ2M)

α1e1(δ + M)
> µ.

4 Stability and bifurcation analysis

4.1 Existence of the equilibria

System (2.1) has at most five equilibrium points, they are following
(i) The trivial equilibrium point E0(0, 0, 0) always exists.
(ii) The axial equilibrium point E1(

a
b , 0, 0) is also existing always since b > 0 according to our

hypothesis.

(iii) The disease-free equilibrium E2(S2, 0, P2) where S2 =
m(1 + ληA)− e3ηA

(e1α1 − mγ1)
and

P2 =
(ae1α1 − amγ1 − bm − bmληA + e3bηA)(e1α1 − e3γ1ηA + e1α1ληA)

α1(e1α1 − mγ1)2 providing the given

condition.
(iv) The predator-free equilibrium E3(S3, I3, 0) where S3 =

µδ

β − µ
and

I3 =
δ(aβ − aµ − bµδ)

(cδ + β − µ)(β − µ)
, provided the given condition β > µ and aβ > µ(a + bδ).
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(v) The interior equilibrium point is given by E∗ (S∗, I∗, P∗) , where S∗, I∗, P∗ are positive and
satisfy the following relations

a − bS − cI − βI
δ + S

− α1P
1 + γ1S + γ2 I + ληA

= 0,

βS
δ + S

− α2P
1 + γ1S + γ2 I + ληA

− µ = 0,

e1α1S + e2α2 I + e3ηA
1 + γ1S + γ2 I + ληA

− m = 0.

(4.1)

4.2 Local stability analysis

The Jacobian matrix for the system (2.1) at any arbitrary equilibrium point E(S, I, P) is

J =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 ,

where
m11 = a − 2bS − cI +

βSI
(δ + S)2 − βI

δ + S
+

α1γ1SP
(1 + γ1S + γ2 I + ληA)2 − α1P

1 + γ1S + γ2 I + ληA
,

m12 = −cS − βS
δ + S

+
α1γ2SP

(1 + γ1S + γ2 I + ληA)2 , m13 = − α1S
1 + γ1S + γ2 I + ληA

,

m21 =
βI

δ + S
− βSI

(δ + S)2 +
α2γ1 IP

(1 + γ1S + γ2 I + ληA)2 ,

m22 =
βS

δ + S
− α2P

1 + γ1S + γ2 I + ληA
+

α2γ2 IP
(1 + γ1S + γ2 I + ληA)2 − µ,

m23 = − α2 I
1 + γ1S + γ2 I + ληA

, m31 =
e1α1P

1 + γ1S + γ2 I + ληA
− (e1α1S + e2α2 I + e3ηA)γ1P

(1 + γ1S + γ2 I + ληA)2 ,

m32 =
e2α2P

1 + γ1S + γ2 I + ληA
− (e1α1S + e2α2 I + e3ηA)γ2P

(1 + γ1S + γ2 I + ληA)2 , m33 =
e1α1S + e2α2 I + e3ηA
1 + γ1S + γ2 I + ληA

− m.

Lemma 4.1. The equilibrium point E0 is always a saddle.

Proof. The eigenvalues of the Jacobian matrix for E0 are a, −µ, and −m. Hence, E0 is always a
saddle since a > 0. □

Lemma 4.2. The equilibrium point E1

( a
b

, 0, 0
)

is always a saddle.

Proof. The eigenvalues of the Jacobian matrix for equilibrium point E1

( a
b

, 0, 0
)

are −a,
aβ

a + bδ

and
e1α1a + ηbA

b + aγ1 + ληbA
− m. Since a is always positive according to hypothesis of our model, one

eigenvalue is always negative (−a), while another eigenvalue is always positive
(

aβ

a + bδ

)
.

Therefore, E1 is a saddle. □
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Lemma 4.3. The disease-free equilibrium point E2(S2, 0, P2) is locally asymptotically stable if ∆1 >

0, ∆2 > 0 and ∆1∆2 > ∆3, where the expression of ∆i’s are given below.

Proof. The Jacobian matrix associated with equilibrium point E2(S2, 0, P2) is

J(E2) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where
a11 = a − 2bS2 −

α1S2P2γ1

(1 + γ1S2 + ληA)2 +
α1P2

1 + γ1S2 + ληA
, a12 = −cs2 −

βS2

δ + S2
+

α1S2P2γ2

(1 + γ1S2 + ληA)2 ,

a13 = − α1S2

1 + γ1S2 + ληA
, a21 = 0, a22 =

βS2

δ + S2
− α2P2

1 + γ1S2 + ληA − µ
, a23 = 0,

a31 =
e1α1P2

1 + γ1S2 + ληA
− (e1α1S2 + ηA)P2γ1

(1 + γ1S2 + ληA)2 , a32 =
e2α2P2

1 + γ1S2 + ληA
− (e1α1S2 + ηA)P2γ2

(1 + γ1S2 + ληA)2 ,

a33 =
e1α1S2 + ηA

1 + γ1S2 + ληA
− m.

The characteristic equation of the Jacobian matrix J(E2) around the disease-free equilib-
rium point E2(S2, 0, P2) is

χ3 + ∆1χ2 + ∆2χ + ∆3 = 0,

where the coefficients are

∆1 = −a11 + a22 + a33, ∆2 = a11a22 + a22a33 + a11a33, ∆3 = a13a21a22 − a11a22a33.

The equilibrium point E2(S2, 0, P2) will be locally asymptotically stable if the coefficients of
the characteristic equation satisfy the Routh-Hurwitz stability criterion i.e., if ∆1 > 0, ∆2 > 0
and ∆1∆2 > ∆3. □

Lemma 4.4. The predator-free equilibrium point E3(S3, I3, 0) is locally asymptotically stable if A1 >

0, A2 > 0 and A1 A2 > A3, where the expression of Ai’s are given below.

Proof. The Jacobian matrix associated with equilibrium point E3(S3, I3, 0) is

J(E3) =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 ,

where

b11 = a − 2bS3 − cI3 +
βS3 I3

(δ + S3)2 − βI3

δ + S3
, b12 = −cs3 −

βS3

δ + S3
, b13 = − α1S3

1 + γ1S3 + γ2 I3 + ληA
,

b21 =
βI3

δ + S3
− βS3 I3

(δ + S3)2 , b22 =
βS3

δ + S3
, b23 = − α2 I3

1 + γ1S3 + γ2 I3 + ληA
, b31 = 0, b32 = 0,

b33 =
e1α1S3 + e2α2 I3 + ηA

1 + γ1S3 + γ2 I3 + ληA
− m.
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The characteristic equation of the Jacobian matrix J(E3) around the predator-free equilib-
rium point E3(S3, I3, 0) is
ξ3 + A1ξ2 + A2ξ + A3 = 0,
where the coefficients are
A1 = −b11 − b22 − b33, A2 = b11b22 + b22b33 + b11b33, A3 = b12b21b33 − b11b12b33.

The equilibrium point E3(S3, I3, 0) will be locally asymptotically stable if the coefficients of
the characteristic equation satisfy the Routh-Hurwitz stability criterion i.e., if A1 > 0, A2 > 0
and A1 A2 > A3. □

Lemma 4.5. The interior equilibrium E∗(S∗, I∗, P∗) is locally asymptotically stable if ψ1 > 0, ψ2 > 0
and ψ1ψ2 > ψ3, where the expression of ψi’s are given below.

Proof. The Jacobian for interior equilibrium E∗(S∗, I∗, P∗) is

J(E∗) =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 ,

where,

c11 = a − 2bS∗ − cI − βI∗

δ + S∗ +
βS∗ I∗

(δ + S∗)2 − α1P∗

1 + γ1S∗ + γ2 I∗ + ληA
+

α1γ1S∗P∗

(1 + γ1S∗ + γ2 I∗ + ληA)2 ,

c12 = −cS∗ − βS∗

δ + S∗ +
α1γ2S∗P∗

(1 + γ1S∗ + γ2 I∗ + ληA)2 , c13 = − α1S∗

1 + γ1S∗ + γ2 I∗ + ληA
,

c21 =
βI∗

δ + S∗ − βS∗ I∗

(δ + S∗)2 +
α2γ1 I∗P∗

(1 + γ1S∗ + γ2 I∗ + ληA)2 ,

c22 =
βS∗

δ + S∗ − α2P∗

1 + γ1S∗ + γ2 I∗ + ληA
+

α2γ2 I∗P∗

(1 + γ1S∗ + γ2 I∗ + ληA)2 − µ, c23 = − α2 I∗

1 + γ1S∗ + γ2 I∗ + ληA
,

c31 =
e1α1P∗

1 + γ1S∗ + γ2 I∗ + ληA
− (e1α1S∗ + e2α2 I∗ + e3ηA)γ1P∗

(1 + γ1S∗ + γ2 I∗ + ληA)2 ,

c32 =
e2α2P∗

1 + γ1S∗ + γ2 I∗ + ληA
− (e1α1S∗ + e2α2 I∗ + e3ηA)γ2P∗

(1 + γ1S∗ + γ2 I∗ + ληA)2 , c33 =
e1α1S∗ + e2α2 I∗ + e3ηA
1 + γ1S∗ + γ2 I∗ + ληA

− m.

The characteristic equation of the Jacobian matrix J(E∗) around the interior equilibrium
point E∗(S∗, I∗, P∗) is

χ3 + ψ1χ2 + ψ2χ + ψ3 = 0, (4.2)

where the coefficients are
ψ1 = −c11 − c22 − c33, ψ2 = c11a22 + c22c33 + c11c33 − c12c21 − c13c31 − c23c32,
ψ3 = c11c23c32 + c12c21c33 + c13c22c31 − c11c22c33 − c12c31c23 − c13c21c32.

The interior equilibrium point E∗(S∗, I∗, P∗) will be locally asymptotically stable if the
coefficients of the characteristic equation satisfies the Routh-Hurwitz stability criterion i.e. if
ψ1 > 0, ψ2 > 0 and ψ1ψ2 > ψ3. □

4.3 Hopf bifurcation analysis

Theorem 4.6. The system (2.1) undergoes a Hopf bifurcation around the interior equilibrium when
the rate of disease transmission (β) exceeds a critical value. The Hopf bifurcation occurs at β = βH if
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and only if the following conditions hold

(i) G(βH) ≡ ψ1(βH)ψ2(βH)− ψ3(βH) = 0

(ii)
d

dβ
(Re(χ(β))|β=βH , 0

where χ is the root of the characteristic equation defined in equation (4.2).

Proof. Let β = βH, then the characteristic equation χ3 + ψ1χ2 + ψ2χ + ψ3 = 0 turns into
(χ2 + ψ2)(χ + ψ1) = 0.

Clearly, the roots of the above equation are χ1 = i
√

ψ2, χ2 = −i
√

ψ2 and χ3 = −ψ1.

Now we can rewrite the roots considering λ as a bifurcation parameter as follows

χ1(β) = θ1(β) + iθ2(β),
χ2(β) = θ1(β)− iθ2(β),
χ3(β) = −ψ1(β).

Substituting χ1(β) = θ1(β) + iθ2(β) into the above characteristic equation and then differ-
entiating with respect to β and separating the real and imaginary parts, we get

P(β)θ′1(β)− Q(β)θ′2(β) + U(β) = 0,
Q(β)θ′1(β) + P(β)θ′2(β) + V(β) = 0,

where,

P(β) = 3θ2
1(β) + 2ψ1(β)θ1(β) + ψ2(β)− 3θ2

2(β),
Q(β) = 6θ1(β)θ2(β) + 2ψ1(β)θ2(β),
U(β) = θ2

1(β)ψ′
1(β) + ψ′

2(β)θ1(β) + ψ′
3(β)− ψ′

1(β)θ2
2(β),

V(β) = 2θ1(β)θ2(β)ψ′
1(β) + ψ′

2(β)θ2(β).

At β = βH, we have θ1(βH) = 0 and θ2(βH) =
√

ψ2(βH). Using these results, we can
obtain

P(βH) = −2ψ2(βH), Q(βH) = 2ψ1(βH)
√

ψ2(βH),
U(βH) = ψ′

3(βH)− ψ′
1(βH)ψ2(βH) and V(βH) = ψ′

2(βH)
√

ψ2(βH).

Now,

d
dβ

(Re(χ(β))) | β=βH =
Q(βH)V(βH) + P(βH)U(βH)

P(βH)2 + Q(βH)2

=
2ψ1(βH)

√
ψ2(βH)× ψ′

2(βH)
√

ψ2(βH) + (−2ψ2(βH))(ψ
′
3(βH)− ψ′

1(βH)ψ2(βH))

(−2ψ(βH))2 + (2ψ1(βH)
√

ψ2(βH))2

=
ψ1(βH)ψ

′
2(βH)− ψ′

3(βH) + ψ′
1(βH)ψ2(βH)

2(ψ2(βH) + (ψ1(βH))2)

, 0, i f ψ1(βH)ψ
′
2(βH)− ψ′

3(βH) + ψ′
1(βH)ψ2(βH) , 0,
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and χ3(βH) = −ψ1(βH) , 0.

So, the transversality condition
(

i.e.
d

dβ
(Re(χj(β))) | β=βH , 0, j = 1, 2.

)
holds and the

system (2.1) exhibits Hopf bifurcation at β = βH. Hence, the theorem. □

4.4 Optimal control strategy

To analyze the impact of supplying additional food as a control strategy, we incorporate a
time-dependent control variable A(t), representing the quantity of additional food provided
to the predator population. The control is bounded as 0 ≤ A(t) ≤ Amax. The corresponding
controlled system becomes:

dS
dt

= aS − bS2 − cSI − βSI
δ + S

− α1SP
1 + γ1S + γ2 I + ληA(t)

,

dI
dt

=
βSI

δ + S
− α2 IP

1 + γ1S + γ2 I + ληA(t)
− µI,

dP
dt

=
(e1α1S + e2α2 I + e3ηA(t))P

1 + γ1S + γ2 I + ληA(t)
− mP.

(4.3)

The goal is to minimize the number of infected individuals I(t) and the cost associated
with implementing the control A(t), over a finite time horizon [0, T]. This is achieved by
minimizing the objective functional:

J(A) =
∫ T

0

[
a1 I2 + a2A2 + a3P2] dt, (4.4)

where a1, a2, and a3 are non-negative weight parameters balancing the importance of mini-
mizing infection, control cost, and predator population, respectively. Interestingly, the term
a1 I2 represents the disease burden, where the squared form penalizes high infection densities
more severely and ensures differentiability of the objective function. The quadratic term a2A2

penalizes the excessive use of additional food, thereby promoting economically efficient and
ecologically sustainable strategies. Furthermore, the predator penalty term a3P2 is included to
prevent excessive growth of the predator population due to additional food supplementation,
which could otherwise lead to ecological imbalance.

To solve this optimal control problem, we apply Pontryagin’s Maximum Principle. First,
we define the Hamiltonian function:

H =
[
a1 I2 + a2A2 + a3P2]+ ϕ1

[
aS − bS2 − cSI − βSI

δ + S
− α1SP

1 + γ1S + γ2 I + ληA

]
+ϕ2

[
βSI

δ + S
− α2 IP

1 + γ1S + γ2 I + ληA
− µI

]
+ ϕ3

[
(e1α1S + e2α2 I + e3ηA)P

1 + γ1S + γ2 I + ληA
− mP

]
,

(4.5)
where ϕ1, ϕ2 and ϕ3 are the adjoint (or costate) variables corresponding to the state variables
S(t), I(t), P(t), respectively.
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The dynamics of the adjoint variables are governed by:

dϕi

dt
= −∂H

∂xi
, i = 1, 2, 3, (4.6)

i.e.,

dϕ1

dt
= −∂H

∂S
= −

[
ϕ1

{
a + 2bS − cI − βI

δ+S + βSI
(δ+S)2 − α1P

(1+γ1S+γ2 I+ληA)
+ α1γ1SP

(1+γ1S+γ2 I+ληA)2

}
+ϕ2

{ βI
δ+S − βSI

(δ+S)2 − α2γ1 IP
(1+γ1S+γ2 I+ληA)2

}
+ ϕ3

{ e1α1P
(1+γ1S+γ2 I+ληA)

− e1α1SP
(1+γ1S+γ2 I+ληA)2

}]
.

dϕ2

dt
= −∂H

∂I
= −

[
2a1 I + ϕ1

{
− cS − βS

δ+S + α1γ2SP
(1+γ1S+γ2 I+ληA)2

}
+ ϕ2

{ βS
δ+S − α2P

(1+γ1S+γ2 I+ληA)

+ α2γ2 IP
(1+γ1S+γ2 I+ληA)2 − µ

}
+ ϕ3

{ e2α2P
(1+γ1S+γ2 I+ληA)

− e2α2 IP
(1+γ1S+γ2 I+ληA)2

}]
.

dϕ3

dt
= −∂H

∂P
= −

[
2a3P − ϕ1

{ α1S
(1+γ1S+γ2 I+ληA)

}
− ϕ2

{
α2 I

(1+γ1S+γ2 I+ληA)

}
+ ϕ3

{ (e1α1S+e2α2 I+e3ηA)
(1+γ1S+γ2 I+ληA)

− m
}]

,
(4.7)

with transversality (terminal) conditions:

ϕ1(T) = 0
ϕ2(T) = 0
ϕ3(T) = 0.

(4.8)

The optimality condition is given by the following equation:

∂H

∂A
= 0, (4.9)

leading to the nonlinear algebraic equation for the control A:

2a2 A + ϕ1

{ ληα1SP
(1 + γ1S + γ2 I + ληA)2

}
+ ϕ2

{ ληα2 IP
(1 + γ1S + γ2 I + ληA)2

}
+

ϕ3

{ e3ηP
(1 + γ1S + γ2 I + ληA)

− e3ηAP
(1 + γ1S + γ2 I + ληA)2

}
= 0,

(4.10)

i.e.,

2a2λ2η2A3 + 4a2λη(1 + γ1S + γ2 I)A2 + [2a2(1 + γ1S + γ2 I)2 + ϕ3e3λη2

−ϕ3e3ηP]A + [ϕ1ληα1SP + ϕ2ληα2 IP + ϕ3e3ηP(1 + γ1S + γ2 I)] = 0.
(4.11)

It should be noted that equation (4.11) may theoretically have up to three positive roots.
However, since the objective function aims to minimize the disease burden using the minimum
amount of additional food supplement, we consider the smallest positive root of A as the
relevant solution. Therefore, we define Ac(t) as the least positive root of equation (4.11), from
which the optimal control is constructed by projecting onto the admissible control set

A∗(t) = min
{

max
{

0, Ac
}

, Amax

}
. (4.12)
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This completes the formulation of the optimal control problem. The system comprising the
state equations (4.3), the adjoint equations (4.7), the optimality condition (4.12), and the associ-
ated boundary and initial conditions forms a two-point boundary value problem, which can be
solved numerically using iterative schemes such as the forward-backward sweep method. For
a broader spectrum of readers, the outline of the numerical scheme for the forward-backward
sweep method is provided below.

Forward-backward sweep method

In optimal control problems, the system dynamics are governed by the state equations, which
form an initial value problem (IVP):

dx
dt

= f (t, x(t), u(t)), x(0) = x0, (4.13)

where x(t) represents the state variables and u(t) is the control variable.
The co-state equations (also called adjoint equations), derived from Pontryagin’s Maximum

Principle, typically form a boundary value problem (BVP):

dϕ

dt
= −∂H

∂x
, ϕ(T) = ϕT, (4.14)

where ϕ(t) are the co-state variables and H is the Hamiltonian function.
The challenge arises because the state equations are solved forward in time from t = 0 to

t = T, while the co-state equations must be solved backward in time from t = T to t = 0.
Moreover, the optimal control depends on both state and co-state variables, resulting in a
coupled system.

The forward-backward sweep method is an iterative numerical procedure to solve such
coupled systems, described as follows:

(a) Initialize control: Start with an initial guess u(0)(t) over the interval [0, T].

(b) Forward sweep: Using u(k)(t), solve the state equations forward in time:

dx(k)

dt
= f (t, x(k)(t), u(k)(t)), x(k)(0) = x0.

(c) Backward sweep: With x(k)(t) and u(k)(t), solve the co-state equations backward in time:

dϕ(k)

dt
= −∂H

∂x

∣∣∣∣
(x(k),u(k))

, ϕ(k)(T) = ϕT.

(d) Control update: Update the control using the optimality condition,

u(k+1)(t) = min
ũ∈[0,umax ]

H(t, x(k)(t), ϕ(k)(t), ũ).

(e) Convergence check: Repeat steps (b)-(d) until the control sequence {u(k)} converges
within a desired tolerance.

This method leverages numerical integration schemes such as Runge-Kutta methods for
both forward and backward sweeps and is effective for solving nonlinear optimal control
problems where analytical solutions are generally not available.
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5 Numerical results

In this section, we consider a hypothetical yet biologically feasible set of parameter values, as
given below.
a = 1, b = 1, c = 0.1, β = 0.6, δ = 0.36, α1 = 0.005, α2 = 0.8, γ1 = 0.1, γ2 = 2.5, λ = 20, η =

0.1, A = 0, µ = 0.4, e1 = 0.2, e2 = 0.15, e3 = 0.22, m = 0.01.

We use the parameter values specified above to investigate the qualitative behavior of
system (2.1) through numerical simulations. Initially, we vary the infection rate β to observe
how the system responds dynamically. For β = 0.6, the system exhibits a stable solution
(see Figure 5.1). As we increase β to 0.7, the system transitions to a limit cycle, as shown
in Figure 5.2. Further increasing the infection rate to β = 0.95 leads to a period-doubling
behavior (see Figure 5.3). When β is raised to 1.7, the system displays chaotic dynamics,
as illustrated in Figure 5.4. These results indicate that an increasing infection rate β can
destabilize the system and drive it into chaotic regimes.

To better understand these transitions, we construct a bifurcation diagram with respect to
β, treating it as the bifurcation parameter. The diagram, shown in Figure 5.5, covers the param-
eter range β ∈ [0.5, 1.82] and reveals the complex dynamical structure of the system, including
transitions from stability to chaos. Specifically, the system is disease-free for β < 0.58. Within
the interval β ∈ [0.58, 0.65), the system exhibits a stable focus, indicating convergence toward
an endemic equilibrium. A limit cycle emerges for β ∈ [0.65, 0.9), and for β ∈ [0.9, 1.2), the
system undergoes period-doubling oscillations. As β increases further to the range [1.2, 1.82],
the dynamics become increasingly complex, transitioning from double-period oscillations to
higher-order periodic orbits and eventually to chaos.

Figure 5.1: The system (2.1) is stable for β = 0.6 and A = 0 where a = 1; b = 1; c = 0.01; δ =

0.36; α1 = 0.005; α2 = 0.8; γ1 = 0.1; γ2 = 2.5; µ = 0.4; λ = 20; η = 0.1; e1 = 0.2; e2 =

0.15; e3 = 0.22; µ = 0.4; m = 0.01; with the initial condition [S(0), I(0), P(0)] = [0.5, 0.2, 0.8].
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Figure 5.2: The figure shows limit cycle oscillation of the system (2.1) for β = 0.7 and other
parameters values as in Figure 5.1

Figure 5.3: The system (2.1) shows period doubling oscillation for β = 0.95 and other param-
eters values as in Figure 5.1.
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Figure 5.4: The system (2.1) shows chaos for β = 1.7 and other parameters values as in Figure
5.1.

Figure 5.5: The bifurcation diagram for the system (2.1) with respect β, when the values of
other parameter are remained same as in the Figure5.1.

Moreover, we compute the Poincaré map on the I-P plane by fixing S = 0.5, under the
conditions A = 0 and β = 1.7 (see Figure 5.6). The scattered distribution of sampling points
in the map confirms that the system exhibits chaotic behavior at β = 1.7 in the absence of
additional food.
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To further validate the presence of chaos, we calculate the system’s maximum Lyapunov
exponent at β = 1.7 (Figure 5.7). We begin by simulating the system dynamics and then
compute the Lyapunov exponents from the resulting time series of the state variables. The
numerical computation is performed using the method proposed by Wolf et al. [29,41], which
allows for the estimation of non-negative Lyapunov exponents from experimental or simulated
time series data. A positive value of the maximum Lyapunov exponent confirms the chaotic
nature of system (2.1), as shown in Figure 5.7.

Figure 5.6: Figure shows the Poincare map of the system (2.1) in the I - P plane (S = 0.50).

Figure 5.7: The maximum Lyapunov exponent of the system (2.1) for β = 1.7.

We now incorporate the additional food parameter A into system (2.1). When A = 0.01,
the system exhibits chaotic behavior (see Figure 5.8). As we increase the value of A to 0.2, the
system transitions to a two-periodic solution (Figure 5.9). Further increasing A to 0.6 leads
to the emergence of a limit cycle, as shown in Figure 5.10. Finally, for A = 0.8, the system
converges to a stable focus (Figure 5.11).
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Figure 5.8: The system (2.1) shows chaos for the value of switching parameter A = 0.01 and
other parameters values as in Figure 5.4.

Figure 5.9: Existence of period-doubling oscillation around the interior equilibrium point E∗

for the system (2.1) for A = 0.2, where the other values of parameter are remained same as in
the Figure 5.4.
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Figure 5.10: Existence of periodic oscillation around the interior equilibrium point E∗ of the
model (2.1) for A = 0.6, where the other values of parameter are fixed as in Figure 5.4.

Figure 5.11: Stability of the interior equilibrium of the system (2.1), where A = 0.8 and the
values of other parameter are same as in Figure 5.4.

To further illustrate the influence of additional food, we construct a bifurcation diagram of
system (2.1) with respect to the parameter A over the interval A ∈ [0, 1] (see Figure 5.12). The
diagram reveals a rich variety of dynamical behaviors, transitioning from chaos to stable focus
as A increases. Specifically, as A gradually increases, the system passes through a sequence of
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dynamic regimes: from chaotic oscillations to period-doubling, then to limit cycle oscillations,
and ultimately to a stable focus-indicating enhanced system stability.

Figure 5.12 shows that for A ∈ [0, 0.09], the system exhibits high-period and chaotic os-
cillations; for A ∈ (0.09, 0.21], it displays 2-periodic oscillations; and for A ∈ (0.21, 0.72], it
settles into limit cycle oscillations. Finally, for A > 0.72, the system stabilizes at an interior
equilibrium point.

Furthermore, if the value of A is increased significantly-representing a higher external
supply of additional food-we observe that for A > 5, the system reaches a disease-free stable
equilibrium, meaning the infected prey population vanishes entirely (see Figure 5.13). This
demonstrates that increasing the availability of additional food can lead to eradication of the
disease within the prey population.

Figure 5.12: The bifurcation diagram for the system (2.1) with respect to A, when the values
of other parameter are remained same as in the Figure 5.4.
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Figure 5.13: The system (2.1) shows disease-free stable focus for the value of additonal food
parameter A = 5.5 and other parameters values as in Figure 5.4.

5.1 One-parameter bifurcation

5.1.1 One-parameter bifurcation with respect to infection rate (β)

At first we perform One-parameter bifurcation of the system (2.1) according to the disease
infection rate β in the absence of additional food i.e. when A = 0. We have found transcritical
bifurcation (BP) at β = 0.552395 where the predator population goes extinct. After slightly
increasing the parameter value of β we have found supercritical Hopf (H1−) bifurcation at
β = 0.612907 since the first Lyapunov coefficient is negative (l1 = −0.167948), which indicates
occurrence of stable limit cycle. Between BP and Hopf bifurcation (H1−) the system posses
a unique positive interior equilibrium. Again, for further increasing the value of β, we have
found supercritical Hopf bifurcation (H2−) at β = 2.506122 which also shows stable limit cycle
oscillation there. Further increasing of β the system shows subcritical Hopf bifurcation (H3+)
at β = 3.426332 since the first Lyapunov coefficient is positive (l1 = 4.220780) and at this
point the system shows unstable limit cycle oscillation. Additionally, for further increment of
β, the system displays saddle node bifurcation (LP) at β = 4.262811. For further continuation
of bifurcation diagram, the system shows another transcritical bifurcation (BP), when the
predator population becomes extinction. The blue curve between H2− and H3+ indicates
stable coexistence equilibrium. All the above dynamical behavior are captured in Figure 5.14.
Biological implications of the above bifurcations are described in Table 5.1.
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Figure 5.14: The bifurcation diagram of predator (P) with respect to disease infection rate
(β) when additional food is zero i.e. A = 0; and values of all other parameters are same as
in Figure 5.1. Here, BP; H1−, H2− and H3+ are transcritical bifurcation, supercritical and
subcritical Hopf bifurcations, respectively and LP indicates the saddle-node bifurcation.

5.1.2 One-parameter bifurcation with respect to additional food (A)

Now we draw a bifurcation diagram with respect to additional food (A) and all other pa-
rameter values are same as that of Figure 5.1. It is observed that the system (2.1) shows
supercritical Hopf bifurcation (H−) at (A = 0.717910), since the first Lyapunov coefficient is
negative (l1 = −0.6252725). On the left side of the supercritical Hopf (H−) point, the sys-
tem exhibits stable limit cycle. For gradual increase in additional food, the system exhibits
a transcritical bifurcation (BP) at (A = 5). Therefore, the system experiences a transcritical
bifurcation between interior equilibrium and disease-free equilibrium. Between H− and BP,
the system exhibits stable dynamics around the interior equilibrium point. We also observe
that at right hand side of BP point (i.e. A > 5) system becomes entirely disease-free. For very
small increment in A, the system shows a neutral saddle point labelled by H at A = 5.000003.
All these dynamical features are captured in Figure 5.15.
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Figure 5.15: The bifurcation diagram of predator (P) w.r.t. additional food A, when β = 0.58;
and values of all other parameters are same as in Figure 5.1.

5.1.3 One-parameter bifurcation with respect to predation rate on susceptible prey (α1)

Considering the values β = 1.7 and A = 1.2 we now develop a bifurcation diagram relating
to predation rate of predator to susceptible prey (α1), keeping unchange all other parameter
values being as in Figure 5.1. The system (2.1) exhibits supercritical Hopf bifurcation (H1−)
at α1 = 0.029481 as first Lyapunov coefficient is negative (l1 = −0.1251716). For further incre-
ment of α1, again the system shows supercritical Hopf bifurcation (H2−) with first Lyapunov
coefficient l1 = −1.246089 × 10−02 at α1 = 0.04. It is to be noted that on the left hand side
of (H1−) point, the system is stable around the coexisting steady state whereas the system
displays stable limit cycle oscillations between these two supercritical Hopf bifurcations (H1−
& H2−). For a further increase of α1, at α1 = 0.044864 a branch point (BP) or transcritical
bifurcation occurs. It is interesting to note that between H2− and BP point system again be-
comes stable around the interior equilibrium. However, the system switches its stability from
interior equilibrium to disease-free equilibrium point. That means at the right hand side of
the transcritical bifurcation (BP) the system becomes disease-free (I = 0). The entire scenario
has been demonstrated in the Figure 5.16.
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Figure 5.16: The One-parameter bifurcation diagram of predator (P) with respect to predation
rate of predator to susceptible prey α1 when β = 1.7 and A = 1.2; and values of all other
parameters are same as in Figure 5.1.

5.1.4 One-parameter bifurcation with respect to predation rate on infected prey (α2)

To investigate the impact of predation rate of predator to infected prey (α2) on the population
dynamics, we fix two parameter values of β = 1.7 and additional food A = 1.2, and other
parameters remains same as in Figure 5.1. We draw the bifurcation diagram with respect to
α2, which displays that when the value of α2 = 0.361775 a saddle node bifurcation (LP) occurs,
and two interior equilibrium points emerge in the system (2.1) (see Figure 5.17). For very small
increment of α2, system shows a subcritical Hopf bifurcation H+ at α2 = 0.364393 and for
further increase in α2, system exhibits a transcrical bifurcation (BP) at α2 = 0.378119. Again if
we increase in α2, we find another Hopf bifurcation (H−) at α2 = 1.301133, which is subcritical
since first Lyapunove coefficient is negative. The system exhibits stable limit cycle oscillation
on the right hand side of the bifurcation point H−. Between these two Hopf bifurcation
points, system is stable around an interior equilibrium point. From the Hopf point H+, the
system produces unstable limit cycle oscillations. On the left hand side of the saddle node
bifurcation point interior equilibrium point doesn’t exist since predator population extinct
from the system.
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Figure 5.17: The bifurcation diagram of predator (P) with respect to predation rate of predator
to infected prey α2 when β = 1.7 and A = 1.2; and values of all other parameters are same as
in Figure 5.1.

Table 5.1: Description of bifurcations and their biological implications.

Type of bifurcation Biological implication
Hopf bifurcation (H) An ecological system that was in a steady state starts to ex-

hibit self-sustained oscillations (limit cycle oscillation) due
to a small change in a parameter.

Supercritical Hopf bifurcation (H1−) For any initial population density, the system converges to
a unique periodic solution, known as a stable limit cycle.

Supercritical Hopf bifurcation (H1+) For perturbations in the initial population density from the
limit cycle oscillation (unstable limit cycle), the system con-
verges either to a steady state or to another periodic solu-
tion.

Transcritical bifurcation (BP) Two equilibrium points of the system, which always exist,
exchange their stability (i.e., the stable one becomes unsta-
ble and the unstable one becomes stable) as the bifurcation
parameter passes through a critical threshold value.

Sddle-node bifurcation (LP) Either two steady states start to coexist, or they approach
each other, collide, and vanish from the system. This
means that beyond the critical value, the system may ex-
perience population extinction.
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5.2 Two parameter bifurcation

5.2.1 Two-parameter bifurcation in the parametric plane β − A

Now we visualize the complex dynamic behaviour of the system (2.1) and perform a two
parameter bifurcation in the parameter space β − A. Figure 5.18 represents the dynamical
behaviour of the system as the infection rate β and additional food A vary along the x− and
y−axis, respectively. Different bifurcation curves divide β − A parametric space into distinct
dynamic regions. It is observed that when additional food A is low, and β is gradually
increased, the system goes extinct except for the prey population i.e. only E1 exists. The
region R1 colored in red is bounded by the transcritical bifurcation curve, and we have found
a zero Hopf bifurcation point on that curve. Again, if we increase β, the system enters the
R5 region (green). Here, all populations coexist stably. For further increment of β, the system
enters the R2 region (pink), and this region is bounded by the Hopf bifurcation curve. Here
all species coexist in an oscillating manner. For a further increase in β, the system gradually
enters the R3 (blue) and then R4 (cyan) regions, respectively. These two regions are bounded
by another Hopf bifurcation curve; here, the predator population goes to extinction while the
other two prey population oscillate together. It is observed that incorporation of alternative
food gradually stabilizes the system, and further increases in the alternative food parameter
(i.e., above a critical value of A = 5) make the system disease-free and create a region which
is colored in yellow marked as R6.

Figure 5.18: The two-parameter bifurcation diagram of the system with respect to disease
infection rate of susceptible prey (β) and additional food (A) when the values of all other
parameters are same as in Figure 5.1.

5.2.2 Two-parameter bifurcation in the parametric plane β − α1

Now we fix A = 0.01 and then draw a two-parameter bifurcation in the β − α1 parametric
space. Various bifurcations are observed, namely saddle-node, Hopf, and transcritical bifur-
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cations, as we vary the value of disease transmission rate β and predation rate α1. The whole
parametric space β − α1 is separated into several distinct dynamical domains by the bifur-
cation curves. In the Figure 5.19, we observed that when β is very small, the red region is
occurred where the system is stable around the prey-only axial equilibrium. If β is increased
slightly, the system enters the green region, where it is stable around the interior equilibrium
point and all species coexist stably. With a further increase in β, the system transitions into the
pink region. In this region all species of the system are oscillating together. The yellow region
enclosed by Hopf bifurcation curves is disease-free zone. Here the system is stable around an
infection-free equilibrium point. For sufficiently large value of β the system enters into blue
and cyan region. The system exhibits limit cycle oscillation and here predator population
extinct from the system.

It is observed that the system undergoes a zero-Hopf (ZH) bifurcation at which the LP
curve and the Hopf curve meet tangentially. This zero-Hopf bifurcation occurs at β = 5.487369
and α1 = 0.063908. A zero-Hopf bifurcation is characterized by the presence of one zero
eigenvalue and a pair of purely imaginary eigenvalues at the critical equilibrium point. In ad-
dition, several other codimension-two bifurcations are observed, including another ZH point
at β = 0.544000 and α1 = 0.054900; a generalized Hopf (GH) bifurcation at β = 6.880697 and
α1 = 0.171451; and a Bogdanov-Takens (BT) bifurcation at β = 6.673923 and α1 = 0.091776.
The complete bifurcation scenario is illustrated in Figure 5.19.

Figure 5.19: The two-parameter bifurcation diagram of the system with respect to disease
infection rate (β) and predation rate to the susceptible prey (α1), when the values of all other
parameters are same as in Figure 5.1.

5.3 Optimal control of infection

To analyze the impact of additional food supply as a control strategy, we formulated the
optimal control problem using the following parameter set: a = 1, b = 1, c = 0.1, β = 0.6,
δ = 0.36, α1 = 0.005, α2 = 0.8, γ1 = 0.1, γ2 = 2.5, λ = 20, η = 0.1, µ = 0.4, e1 = 0.2, e2 = 0.15,
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e3 = 0.22, and m = 0.01. For these values, the uncontrolled system (2.1) exhibits a stable focus
around the interior equilibrium.

The control variable A(t), representing the time-dependent supply of additional food to
the predators, is constrained by 0 ≤ A(t) ≤ 5.5. The weight parameters in the objective
functional are set as a1 = 1, a2 = 1, and a3 = 0.1.

Figure 5.20 illustrates the time evolution of the susceptible prey S(t), infected prey I(t),
and predator population P(t) under the optimal control A∗(t). The infection level I(t) declines
rapidly and approaches extinction over time, which represents a desirable outcome. Concur-
rently, the susceptible prey S(t) increases and stabilizes, while the predator population P(t)
rises initially and subsequently stabilizes at a moderate level.

The optimal control profile A∗(t) shows that a high supply of additional food is applied
initially to support the predator population and aid in infection control. As the infection
diminishes and predator dynamics stabilize, the control effort gradually decreases to zero.

The bottom row of Figure 5.20 presents the time trajectories of the adjoint variables ϕ1(t),
ϕ2(t), and ϕ3(t), which reflect the marginal cost associated with the respective state variables.
The trajectories of ϕ2 and ϕ3 are notably negative at the start, indicating a high cost associated
with the infected prey and predator populations early in the time frame. Over time, all costate
variables converge to zero, consistent with the terminal conditions.

Figure 5.20: Time series of the state variables (top-left), optimal control A(t) (top-right), and
adjoint variables ϕ1(t), ϕ2(t), and ϕ3(t) (bottom row) for the parameter set: β = 0.6, Amax =

0.2. The optimal control reduces the infection I(t) while supporting predator P(t) and prey
S(t) populations efficiently.

To evaluate the influence of increased disease transmission, we conducted optimal control
simulations for β = 0.7 under the constraint 0 ≤ A(t) ≤ 0.2. Notably, in the absence of
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control, the system exhibits persistent limit-cycle oscillations at β = 0.7 due to strong nonlinear
interactions among the susceptible prey, infected prey, and predator populations. However, as
shown in Figure 5.21, the implementation of the optimal food-based intervention effectively
suppresses these oscillations.

The upper-left panel illustrates the time evolution of S(t), I(t), and P(t), where the in-
fection is significantly reduced and ultimately eradicated, while the susceptible and predator
populations stabilize. The optimal control profile A(t), depicted in the upper-right panel, rises
smoothly to a peak below the upper bound and declines to zero as the infection diminishes.
The adjoint variables ϕ1(t), ϕ2(t), and ϕ3(t), shown in the lower panels, guide the control
process and satisfy the transversality conditions at the final time.

These results demonstrate that optimal control not only mitigates disease spread but also
converts the long-term oscillatory behavior into a stable equilibrium, thereby enhancing sys-
tem resilience even under higher infection pressure. Furthermore, we simulated the optimal
control model (4.3) with β = 1.65 and Amax = 5.5 (see Figure 5.22), confirming that the optimal
control scheme presented in Section 4.4 is robust.

Figure 5.21: Time series of the state variables (top-left), optimal control A(t) (top-right), and
adjoint variables ϕ1(t), ϕ2(t), and ϕ3(t) (bottom row) for the parameter set: β = 0.7, Amax =

0.2. The optimal control reduces the infection I(t) while supporting predator P(t) and prey
S(t) populations efficiently.
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Figure 5.22: Time series of the state variables (top-left), optimal control A(t) (top-right), and
adjoint variables ϕ1(t), ϕ2(t), and ϕ3(t) (bottom row) for the parameter set: β = 1.65, Amax =

5.5. The optimal control reduces the infection I(t) while supporting predator P(t) and prey
S(t) populations efficiently.

These results highlight the effectiveness of optimal control in managing disease prevalence
within a predator-prey ecosystem by judiciously adjusting the food supply to predators. This
strategy achieves a balance between minimizing infection and maintaining stable predator-
prey dynamics.

It is important to note that the food-based control considered here is ecologically feasible
when the supplemental food supports predator survival without replacing their predation
on both susceptible and infected prey. In practice, such strategies are already employed in
integrated pest management and wildlife disease control. For instance, supplementary feed-
ing can sustain populations of predatory fish that consume diseased or parasite-carrying fish,
thereby controlling the spread of infection among smaller fish.

6 Conclusion

In this study, we analyzed an eco-epidemiological model comprising susceptible prey, infected
prey, and predators, with a focus on the role of additional food provided to the predator
population. The model incorporates nonlinear disease transmission and a generalized Holling
type II functional response. Our results demonstrate that disease transmission can destabilize
the system, potentially leading to chaotic dynamics. However, the inclusion of a constant
external food source has a stabilizing effect and can suppress chaos.

Through bifurcation analysis, we observed transitions such as period-doubling, Hopf, and
transcritical bifurcations as key parameters varied. The system exhibited rich dynamics, in-
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cluding limit cycles and chaos, in the absence of additional food, particularly under high
disease transmission rates. Conversely, increasing food availability induced period-halving
bifurcations and ultimately stabilized the system. Beyond a critical threshold, additional food
could eliminate the infected prey population entirely, resulting in a disease-free equilibrium.

To enhance the model’s practical relevance, we introduced a time-dependent optimal con-
trol representing food supplementation. Using Pontryagin’s Maximum Principle, we derived
the necessary conditions for minimizing infection and intervention costs. Numerical simula-
tions demonstrated that the optimal strategy effectively reduced disease prevalence and trans-
formed oscillatory behavior into stable coexistence, even under conditions prone to chaos.

Overall, our findings highlight that strategic food supplementation can serve as a powerful
ecological intervention for controlling disease and stabilizing predator-prey systems. This
approach also opens new avenues for incorporating realistic resource-based controls in the
management of eco-epidemiological dynamics.
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