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Abstract. This paper proposes a Galerkin method based on Boubaker wavelets (BWGM)
for the numerical solution of a class of differential equations. The method employs
Boubaker wavelets as both weight functions and basis elements to construct approxi-
mate solutions. The accuracy of the proposed method is evaluated by comparing nu-
merical results with exact solutions and with existing schemes such as the Galerkin
method using Fibonacci and Gegenbauer wavelets. Several examples are provided to
demonstrate the validity and applicability of the method. The results indicate that
BWGM yields high accuracy with minimal absolute error, making it an efficient tool for
solving linear, singular, and nonlinear boundary value problems.
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1 Introduction

In recent years, studies of boundary value problems for second-order ordinary differential
equations have attracted the attention of many mathematicians and physicists. Moreover,
most differential equations arising from the modeling of physical phenomena do not always
have known analytical solutions. Thus, the development of numerical approaches to find
approximate solutions becomes essential.

Several numerical methods have recently been used for the numerical solution of ordinary
differential equations, such as the Haar wavelet collocation method [14], the Legendre wavelet
collocation method [12], and the Laguerre wavelet-Galerkin method [13], among others.

Wavelets have become a popular topic in many scientific and engineering discussions.
They are recognized as a new basis for representing functions, a technique for timefrequency
analysis, and a significant mathematical subject. Wavelet analysis is a numerical concept that
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allows one to represent a function in terms of a set of basis functions called wavelets, which
are localized in both location and scale [2].

In wavelet theory, the contributions of Daubechies [7] on orthogonal bases of compactly
supported wavelets and Beylkin et al. [5] on the fast wavelet transform algorithm have made
wavelet-based approximation of ordinary differential equations particularly attractive. Special
interest has been dedicated to the construction of compactly supported smooth wavelet bases.
Spectral methods have good spectral localization but poor spatial localization, while finite
element methods have good spatial localization but poor spectral localization. Wavelet bases
succeed in combining the advantages of both approaches. One strategy for studying differen-
tial equations is to use wavelet function bases in place of conventional piecewise polynomial
trial functions in finite element-type methods. The Galerkin method is widely used in applied
mathematics due to its simplicity and ease of implementation [1, 10].

The wavelet-Galerkin method offers advantages over finite difference or finite element
methods and has led to numerous applications in science and engineering. To a certain extent,
wavelet techniques provide strong competition to the finite element method. Wavelet methods
offer an efficient alternative for solving differential equations numerically, especially boundary
value problems.

Boubaker wavelets are orthonormal functions, a property that greatly simplifies calcula-
tions and leads to straightforward computation of expansion coefficients when used in nu-
merical methods such as collocation or Galerkin methods.

In this paper, we develop a Galerkin method utilizing Boubaker wavelets (BWGM) for the
numerical solution of a class of differential equations. The method is based on expanding the
solution in terms of Boubaker wavelets with unknown coefficients. The properties of Boubaker
wavelets, together with the Galerkin method, are used to evaluate these unknown coefficients
and thereby obtain a numerical solution.

The paper is organized as follows. Section 2 introduces Boubaker wavelets and function
approximation. Section 3 describes the Boubaker wavelet-based Galerkin method for solving
boundary value problems. Numerical implementation is presented in Section 4. Finally,
conclusions are discussed in Section 5.

2 Boubaker wavelets and function approximation

2.1 Boubaker wavelets

Wavelets constitute a family of functions constructed from dilation and translation of a single
function called the mother wavelet. When the dilation parameter a and translation parameter
b vary continuously, we obtain the following family of continuous wavelets [11, 15]:

ψa,b(t) = |a|−1
2 ψ

(
t − b

a

)
, ∀a, b ∈ R, a , 0.

If we restrict the parameters a and b to discrete values as a = a−n
0 , b = mb0a−n

0 , a0 > 1, b0 > 0,
we obtain the following family of discrete wavelets:

ψn,m(t) = |a|−1
2 ψ(an

0 t − mb0), ∀n, m ∈ Z.

The functions ψn,m form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1,
ψn,m(t) forms an orthonormal basis.
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Boubaker wavelets are defined as follows:

ψn,m(t) =


√

2m + 1
2m!
m!2

Bm(2k+1t − 2n + 1),
n − 1
2k−1 ≤ t ≤ n

2k−1 ,

0, otherwise.
(2.1)

where k is a positive integer that defines the scale or resolution level of the wavelet basis,
controlling how the signal is decomposed; n = 1, 2, 3, . . . , 2k−1 is an argument; and m =

0, 1, 2, 3, . . . , M − 1 is the order of the Boubaker functions.
The orthogonal Boubaker polynomials of mth degree are defined on the interval [0, 1) as

Bm(t) =
(m!)2

(2m)!

m

∑
k=0

(−1)m+k (m + k)!
(m − k)!(k!)2 tk.

The first few Boubaker polynomials are given below:

B0(t) = 1,

B1(t) = 1
2 (2t − 1), (2.2)

B2(t) = 1
6 (6t2 − 6t + 1), and so on. (2.3)

For instance, for k = 1 and M = 3, we obtain the Boubaker wavelet bases as follows:

ψ1,0(t) = 2,

ψ1,1(t) = 2
√

3(8t − 3), (2.4)

ψ1,2(t) = 2
√

5(96t2 − 72t + 13), and so on. (2.5)

Function approximation.
Suppose y(t) ∈ L2[0, 1) is expanded in terms of Boubaker wavelets as

y(t) =
∞

∑
n=1

∞

∑
m=0

cn,mψn,m(t). (2.6)

Truncating the above infinite series, we get

y(t) =
2k−1

∑
n=1

M−1

∑
m=0

cn,mψn,m(t). (2.7)

Convergence of Boubaker wavelets.

Theorem 2.1. If a continuous function y(t) ∈ L2(R) defined on [0, 1) is bounded, i.e., |y(t)| ≤ K,
then the Boubaker wavelets expansion of y(t) converges uniformly to it [15].

3 Method of solution

Consider the following boundary value problem:

d2y
dt2 + P(t)

dy
dt

+ Q(t)y = ϕ(t), (3.1)

with boundary conditions
y(0) = a, y(1) = b, (3.2)



352 L. M. Angadi

where P(t) and Q(t) are constants or functions of t, and ϕ(t) is a continuous function. Write
Eq. (3.1) as

R(t) =
d2y
dt2 + P(t)

dy
dt

+ Q(t)y − ϕ(t), (3.3)

where R(t) is the residual of Eq. (3.1); R(t) = 0 for the exact solution, and y(t) satisfies
the boundary conditions. Consider the trial series solution of Eq. (3.1), where y(t) defined
over [0, 1) can be expanded in modified Boubaker wavelets, satisfying the given boundary
conditions, as follows:

y(t) =
2k−1

∑
n=1

M−1

∑
m=0

cn,mψn,m(t), (3.4)

where cn,m are unknown coefficients to be determined. Accuracy in the solution is increased
by choosing higher-degree Boubaker wavelet polynomials. Differentiating Eq. (3.4) twice with
respect to t and substituting into Eq. (3.3), we obtain the residual. To find cn,m, we choose
weight functions as the assumed basis elements and enforce the orthogonality of the residual
to the basis functions over the domain [6]:∫ 1

0
ψn,m(t)R(t) dt = 0, for all n, m.

This yields a system of linear algebraic equations. Solving this system gives the unknown
parameters. Substituting these into the trial solution Eq. (3.4) yields the numerical solution of
Eq. (3.1). To assess the accuracy of the BWGM for the test problems, we use the maximum
absolute error:

Emax = max |ye(t)− ya(t)|,

where ye(t) and ya(t) are the exact and approximate solutions, respectively.

4 Numerical implementation

Problem 4.1. Consider the boundary value problem [9]:

d2y
dt2 − 4y = 4cosh(1), 0 ≤ t ≤ 1, (4.1)

with boundary conditions:

y(0) = 0, y(1) = 0. (4.2)

The implementation as per the method explained in Section 3 is as follows:

R(t) =
d2y
dt2 − 4y − 4cosh(1). (4.3)

Now, choose the weight function w(t) = t(t − 1) for the Boubaker wavelet bases to satisfy the
given boundary conditions Eq. (4.2), i.e., ψ̃(t) = w(t)× ψ(t):

ψ̃1,0(t) = ψ1,0(t)× t(1 − t) = 2t(1 − t),

ψ̃1,1(t) = ψ1,1(t)× t(1 − t) = 2
√

3(8t − 3)t(1 − t), (4.4)

ψ̃1,2(t) = ψ1,2(t)× t(1 − t) = 2
√

5(96t2 − 72t + 13)t(1 − t). (4.5)
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Assume the trial solution of Eq. (4.1) for k = 1 and M = 3 is given by

y(t) = c1,0ψ̃1,0(t) + c1,1ψ̃1,1(t) + c1,2ψ̃1,2(t). (4.6)

Then Eq. (4.6) becomes

y(t) = c1,02t(1 − t) + c1,12
√

3(8t − 3)t(1 − t) + c1,22
√

5(96t2 − 72t + 13)t(1 − t). (4.7)

Differentiating Eq. (4.7) twice with respect to t and substituting the values of y, d2y
dt2 into

Eq. (4.3) gives the residual of Eq. (4.1). The weight functions are the same as the basis func-
tions. Then, by the weighted Galerkin method, we consider∫ 1

0
ψ̃1,j(t)R(t) dt = 0, j = 0, 1, 2. (4.8)

For j = 0, 1, 2 in Eq. (4.8): ∫ 1

0
ψ̃1,0(t)R(t) dt = 0, (4.9)∫ 1

0
ψ̃1,1(t)R(t) dt = 0, (4.10)∫ 1

0
ψ̃1,2(t)R(t) dt = 0. (4.11)

From Eq. (4.9)-(4.11), we obtain a system of algebraic equations with unknown coefficients
c1,0, c1,1, and c1,2. Solving this system yields c1,0 = −1.0933, c1,1 = 0.0064, and c1,2 = −0.0016.
Substituting these values into Eq. (4.7) gives the numerical solution. A comparison of the
numerical solution and absolute errors is presented in Table 4.1, and the numerical solution
alongside the exact solution y(t) = cosh(2t − 1)− cosh(1) of Eq. (4.1) is shown in Figure 4.1.

Table 4.1: Comparison of numerical solution and absolute error with exact solution of Problem
4.1.

t FDM Sol. BWGM Sol. Exact Sol. FDM error BWGM error

0.1 -0.254627 -0.205537 -0.205646 4.90e-02 1.09e-04

0.2 -0.450077 -0.357616 -0.357612 9.25e-02 4.00e-06

0.3 -0.588305 -0.462040 -0.462008 1.26e-01 3.20e-05

0.4 -0.670693 -0.522964 -0.523014 1.48e-01 5.00e-05

0.5 -0.698064 -0.542896 -0.543081 1.55e-01 1.85e-04

0.6 -0.670693 -0.522694 -0.523014 1.48e-01 3.20e-04

0.7 -0.588305 -0.461567 -0.462008 1.26e-01 4.41e-04

0.8 -0.450077 -0.357075 -0.357612 9.25e-02 5.37e-04

0.9 -0.254627 -0.205132 -0.205646 4.90e-02 5.14e-04

Problem 4.2. Consider the boundary value problem [3]:

d2y
dt2 +

1
t

dy
dt

+ y = t2 − t3 − 9t + 4, 0 ≤ t ≤ 1, (4.12)
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Figure 4.1: Numerical solution vs. exact solution for Problem 4.1.

with boundary conditions:

y(0) = 0, y(1) = 0. (4.13)

As explained in Section 3 and the previous problem, we obtain c1,0 = 0.18746, c1,1 = 0.03609,
and c1,2 = 0.00001. Substituting these values into Eq. (4.7) yields the numerical solution.
A comparison of the numerical solution and absolute errors is presented in Table 4.2, and
the numerical solution alongside the exact solution y(t) = t2 − t3 of Eq. (4.12) is shown in
Figure 4.2.

Problem 4.3. Consider the boundary value problem [8]:

d2y
dt2 + y2 = 2π2 cos(2πt)− sin4(2πt), 0 ≤ t ≤ 1, (4.14)

with boundary conditions:

y(0) = 0, y(1) = 0. (4.15)

The exact solution of Eq. (4.14) is y(t) = sin2(πt). The numerical solution, derived as de-
scribed in Section 3, is compared with the exact solution in Table 4.3 and Figure 4.3.
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Table 4.2: Comparison of numerical solution and absolute error with exact solution of Problem
4.2.

t Ref. [3] Sol. GWGM Sol. BWGM Sol. Exact Sol. Ref. [3] error GWGM error BWGM error

0.1 0.009677 0.0090397 0.008989 0.009000 6.77e-04 3.97e-05 1.10e-05

0.2 0.032675 0.0320510 0.031988 0.032000 6.75e-04 5.10e-05 1.20e-05

0.3 0.063354 0.0630460 0.062993 0.063000 3.54e-04 4.60e-05 7.00e-06

0.4 0.095981 0.0960340 0.096003 0.096000 1.90e-05 3.40e-05 3.00e-06

0.5 0.124731 0.1250217 0.125014 0.125000 2.69e-04 2.17e-05 1.40e-05

0.6 0.143688 0.1440131 0.144023 0.144000 3.12e-04 1.31e-05 2.30e-05

0.7 0.146841 0.1470093 0.147030 0.147000 1.59e-04 9.30e-06 3.00e-05

0.8 0.128089 0.1280091 0.128029 0.128000 8.90e-05 9.10e-06 2.90e-05

0.9 0.080862 0.0810082 0.081020 0.081000 1.38e-04 8.20e-06 2.00e-05
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Exact solution
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Figure 4.2: Numerical solution vs. exact solution for Problem 4.2.
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Table 4.3: Comparison of numerical solution and absolute error with exact solution of Problem
4.3.

t Ref. [4] Sol. BWGM Sol. Exact Sol. Ref. [4] error BWGM error

0.1 0.096787 0.096578 0.095492 1.30e-03 1.09e-03

0.2 0.350839 0.350293 0.345492 5.35e-03 4.80e-03

0.3 0.656318 0.656028 0.654508 1.81e-03 1.52e-03

0.4 0.905968 0.905886 0.904508 1.46e-03 1.38e-03

0.5 0.998985 0.998999 1.000000 1.02e-03 1.00e-03

0.6 0.910215 0.910052 0.904508 5.71e-03 5.54e-03

0.7 0.656335 0.655638 0.654508 1.83e-03 1.13e-03

0.8 0.346849 0.346835 0.345492 1.36e-03 1.34e-03

0.9 0.097656 0.097365 0.095492 2.16e-03 1.87e-03
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Figure 4.3: Numerical solution vs. exact solution for Problem 4.3.
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A comparison of absolute errors for Problems 4.1 to 4.3 is given below.

5 Conclusions

In this paper, a BWGM is proposed for the numerical solution of a class of differential equa-
tions. From the tables and figures above, we observe the following:

• The numerical solutions obtained by this method are more accurate than those obtained
by the finite difference method (FDM) and other methods such as those using Fibonacci
wavelets [3] and Gegenbauer wavelets (GWGM).

• The absolute error from this method is very small compared to the FDM and other
methods, such as those detailed in Ref. [3] (Fibonacci wavelets) and GWGM (Gegenbauer
wavelets).

This development advances recent research in numerical analysis and provides significant
benefits to researchers. Thus, the Galerkin method utilizing Boubaker wavelets is very efficient
for linear, singular, and nonlinear boundary value problems.
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Figure 4.4: Comparison of absolute errors for Problems 4.1–4.3.



Galerkin method with Boubaker wavelets 359

References

[1] K. Amaratunga and J. R. William, Wavelet-Galerkin solutions for one-dimensional partial
differential equations, Internat. J. Numer. Methods Engrg., 37 (1994), 2703–2716. DOI.

[2] L. M. Angadi, Numerical solution of generalized Burgers-Huxley equations using wavelet based
lifting schemes, J. Appl. Math. Stat. Anal., 3(2) (2022), 1–14. DOI.

[3] L. M. Angadi, Wavelet based Galerkin method for the numerical solution of singular boundary
value problems using Fibonacci wavelets, J. Sci. Res., 17(1) (2025), 227–234. DOI.

[4] L. M. Angadi, Galerkin method for the numerical solution of some class of differential equations
by utilizing Gegenbauer wavelets, J. Innov. Appl. Math. Comput. Sci., 5(1) (2025), 14–24.
DOI.

[5] G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical algorithms
I, Comm. Pure Appl. Math., 44(2) (1991), 141–183. DOI.

[6] J. E. Cicelia, Solution of weighted residual problems by using Galerkins method, Indian J. Sci.
Technol., 7(3) (2014), 52–54. DOI.

[7] I. Daubechies, Orthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math.,
41(7) (1988), 909–996. DOI.

[8] H. Kaur, R. C. Mittal and R. V. Mishra, Haar wavelet quasilinearization approach for
solving nonlinear boundary value problems, Amer. J. Comput. Math., 1 (2011), 176–182.

[9] A. Mohsen and M. El-Gamel, On the Galerkin and collocation methods for two point bound-
ary value problems using sine bases, Comput. Math. Appl., 56(4) (2008), 930–941.

[10] J. W. Mosevich, Identifying differential equations by Galerkin’s method, Math. Comp., 31
(1977), 139–147. DOI.

[11] M. A. Sarhan, S. Shihab and M. Rasheed, A new Boubaker wavelets operational matrix of
integration, J. Southwest Jiaotong Univ., 55(2) (2020).

[12] S. C. Shiralashetti and A. B. Deshi, Numerical solution of differential equations arising in
fluid dynamics using Legendre wavelet collocation method, Int. J. Comput. Mater. Sci. Eng.,
6(2) (2017), 1750014 (14 pages). DOI.

[13] S. C. Shiralashetti, L. M. Angadi and S. Kumbinarasaiah, Laguerre wavelet-Galerkin
method for the numerical solution of one-dimensional partial differential equations, Int. J. Math.
Appl., 6(1-E) (2018), 939–949.

[14] S. C. Shiralashetti and S. Kumbinarasaiah, Hermite wavelets method for the numerical
solution of linear and nonlinear singular initial and boundary value problems, Comput. Methods
Differ. Equ., 7(2) (2019), 177–198.

[15] S. C. Shiralashetti and L. Lamani, Boubaker wavelet based numerical method for the solu-
tion of Abel’s integral equations, Math. Forum, 28(2) (2020), 114–124.

https://doi.org/10.1002/nme.1620371602
https://doi.org/10.5281/zenodo.13682930
http://dx.doi.org/10.3329/jsr.v17i1.75341
http://dx.doi.org/10.58205/jiamcs.v5i1.1914
https://doi.org/10.1002/cpa.3160440202
https://doi.org/10.17485/ijst/2014/v7sp3.3
http://dx.doi.org/10.1002/cpa.3160410705
https://doi.org/10.2307/2005785
https://doi.org/10.1142/S2047684117500142

	Introduction
	Boubaker wavelets and function approximation
	Boubaker wavelets

	Method of solution
	Numerical implementation
	Conclusions

