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Abstract. Accurate time series forecasting is essential for informed decision-making
in economic planning, financial management, and environmental monitoring. Tradi-
tional linear models such as the Seasonal Autoregressive Integrated Moving Average
(SARIMA) are widely used but often fail to capture the nonlinear and complex dynam-
ics inherent in many real-world datasets. In recent years, Artificial Neural Networks
(ANNSs) have emerged as a powerful alternative, capable of modeling such complex-
ities without relying on rigid assumptions. This study applies ANN models to three
Algerian time series: Gross Domestic Product (GDP), the US Dollar Algerian Dinar
(USD/DZD) exchange rate, and monthly average temperature. The forecasting per-
formance of ANN models is benchmarked against SARIMA models. Empirical results
demonstrate that ANNs consistently outperform SARIMA models in terms of predic-
tive accuracy across all datasets, highlighting their robustness and adaptability in di-
verse forecasting contexts.

Keywords: Artificial Neural Networks, SARIMA models, GDP, temperature, exchange
rate.
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1 Introduction

Time series forecasting plays a pivotal role across various disciplines, serving as a founda-
tional tool for strategic planning in economics, finance, and climate science [7]. In Algeria,
reliable forecasts of key indicators such as GDP, exchange rates, and temperature trends are
vital for economic policy development, currency risk management, and climate-related plan-
ning. Traditional statistical approaches, most notably the Seasonal Autoregressive Integrated
Moving Average (SARIMA) model, have long been standard tools for modeling and forecast-
ing time series data. While these models are well-suited for capturing linear and seasonal
structures, their ability to handle nonlinear dynamics remains limited.

To overcome these limitations, recent research has increasingly turned to machine learn-
ing methods, particularly Artificial Neural Networks (ANNSs), which offer greater flexibility
in modeling complex, nonlinear patterns [2,5]. ANNs do not require strict assumptions about
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the underlying data-generating process and are capable of approximating highly nonlinear re-
lationships, making them particularly attractive for real-world forecasting applications. Foun-
dational concepts and architectures of deep learning are comprehensively presented in the
seminal works of [2], [9], and [5], providing theoretical grounding for the development and
application of ANN models in real-world problems.

Numerous studies have demonstrated the effectiveness of ANN-based models in diverse
forecasting contexts. [10] proposed a multi-model ANN approach for mid- and long-term
load forecasting, achieving significant improvements over traditional methods. [4] showed
that ANN models outperformed other classical time series and machine learning methods for
forecasting GDP growth rates. Similarly, [11] reported that a nonlinear autoregressive neu-
ral network (NAR) provided more accurate rainfall forecasts than traditional ARMA and SE-
TAR models. [8] found that machine learning techniques, including recurrent neural networks
(RNN) and long short-term memory (LSTM) models, achieved better forecasting performance
than ARIMA for exchange rate prediction. [6] also showed that ANN models offered superior
forecasting accuracy compared to ARIMA models when applied to macroeconomic indicators
such as inflation, exchange rates, and GDP. [13] demonstrated that ANN-based models pro-
duced significantly more realistic inflation forecasts than those found in the official budget law
and Medium-Term Program of Tiirkiye, thereby highlighting the model’s practical relevance
for national economic planning.

Although such comparative analyses between ANN and traditional models (such as ARIMA
or SARIMA) have been widely conducted in other countries, very few studies have explored
this question within the Algerian context. Most existing Algerian contributions have focused
on narrow domains, such as the use of ANNs for exchange rate forecasting [1]. However,
a comprehensive, cross-sectoral comparison of ANN and SARIMA models applied to multi-
ple Algerian time series (economic, financial, and climatic) remains largely absent from the
literature. This study aims to fill this gap by providing empirical evidence on the relative
forecasting performance of these two approaches using real Algerian data.

Specifically, we investigate the effectiveness of Neural Network Autoregressive (NNAR)
models feedforward neural networks adapted for time series forecasting in predicting three
representative Algerian time series from diverse domains: economic activity (GDP), financial
markets (USD/DZD exchange rate), and environmental data (monthly average temperature).
The forecasting performance of the ANN models is compared to that of SARIMA models
using standard accuracy metrics. The results provide compelling evidence of the superior
ability of ANN-based approaches to capture the underlying complexity of these time series,
supporting their practical adoption for forecasting applications within the Algerian context.
The findings of this study hold significant policy relevance: improved GDP forecasts can en-
hance economic planning, accurate exchange rate predictions can assist in managing currency
risks, and reliable temperature forecasts can support environmental and climate adaptation
strategies.

The remainder of this paper is organized as follows. Section 2 outlines the methodological
framework, including data preprocessing and a presentation of the SARIMA and ANN mod-
els. Section 3 illustrates the empirical application to Algerian time series data. Finally, Section
4 concludes the paper by summarizing the key findings and highlighting potential directions
for future research.
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2 Methodology

2.1 Data and preprocessing

This study focuses on three Algerian time series datasets, each representing a distinct domain:

* Gross Domestic Product: Annual GDP data for Algeria from 1960 to 2023 (in billions of
USD), obtained from Macrotrends (https://www.macrotrends.net/global-metrics/
countries/DZA/algeria/population). This series reflects the country’s economic tra-
jectory, influenced by oil price fluctuations, structural reforms, and demographic changes.
A strong upward trend is observed. The test set comprises the most recent years from
2016 to 2023.

¢ Exchange Rate (USD/DZD): Monthly exchange rate data for the Algerian Dinar (DZD)
against the US Dollar (USD), spanning from January 1, 2022, to January 1, 2024. Data
were retrieved from Yahoo Finance and reflect short-term financial market dynamics.
The final four months (from September 28, 2023, onward) were reserved for testing.

* Temperature: Monthly average temperature data for Algeria, from January 1991 to De-
cember 2016, sourced from the World Bank database. This series represents environ-
mental and climatic conditions over time. The final year (January to December 2016)
was used as the test set.

Each series was preprocessed to ensure stationarity, applying differencing and seasonal
adjustment techniques where necessary. The datasets were then split into training and testing
sets, and model performance was evaluated to identify the best forecasting approach for each
case.

2.2 Model specifications

To evaluate forecasting performance, two classes of models were considered:

* SARIMA Models: Seasonal Autoregressive Integrated Moving Average models were
applied following the Box Jenkins methodology [3]. The general SARIMA model is
denoted by SARIMA(p,d,q)(P, D, Q)s, where p, d, and g are the non-seasonal autore-
gressive, differencing, and moving average orders, respectively; P, D, and Q are their
seasonal counterparts; and s represents the seasonal period.

The SARIMA model can be expressed as:
@p(L)p(L) (1~ L) (1 = L*) Py = O (L*)0(L)ey,
where:

L is the backshift operator: L*y; = y,_y,

¢p(L) and 6,(L) are the non-seasonal AR and MA polynomials,
®p(L%) and Op(L?) are the seasonal AR and MA polynomials,

¢; is white noise.
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The SARIMA model is particularly well-suited for time series that exhibit both trend
and seasonality. It captures short-term autocorrelation structures through AR and MA
terms and accounts for seasonal patterns via their seasonal counterparts.

Model identification was based on the analysis of autocorrelation (ACF) and partial
autocorrelation (PACF) plots. For seasonal components (P and Q), attention was given
to lags that are multiples of the seasonal period s. Optimal model orders were selected
using the Akaike Information Criterion (AIC).

Artificial Neural Networks: Feedforward neural networks with a single hidden layer
were employed, adhering to the nonlinear autoregressive framework for univariate time
series forecasting (Figure 2.1). In this structure, the current value of the time series is
modeled as a nonlinear function of its past values (lags). Specifically, the model can be
expressed as:

Yr = f(]/tflryt_z, .. .,ytfp) +é,

where f(-) denotes a nonlinear mapping function approximated by the ANN, p is the
number of lagged inputs (input neurons), and ¢; is the error term.

The architecture NNAR(p, k) consists of:

- An input layer with p neurons representing past observations,

— A hidden layer with k neurons using a nonlinear activation function (sigmoid by
default),

— An output layer with a single neuron with linear activation to produce real-valued
forecasts.

The number of lagged inputs p and the number of hidden units k were determined
through a trial-and-error approach, guided by performance on a validation set, and
evaluated using the root mean square error (RMSE).

The models were trained using the backpropagation algorithm with a gradient descent
optimizer. To prevent overfitting and improve generalization, early stopping was imple-
mented based on validation performance. This means that during training, the model
error in a validation set was continuously monitored. Once the error stopped decreas-
ing and began to increase (indicating possible overfitting), training was stopped. This
method allows the network to achieve optimal generalization by not overfitting the train-
ing data. ANN models were developed and evaluated using the nnetar () function from
the forecast package in R, which can automatically select the appropriate input lag and
fit a feedforward neural network with one hidden layer. By default, it averages forecasts
from 20 independently trained networks to increase stability and reduce variance. This
approach has been validated in various forecasting contexts, including recent studies
such as [12], who successfully applied a NNAR(27,5) model to forecast COVID-19 cases
in Italy.

To handle seasonality in the data, the NNAR framework extends to seasonal neural
network autoregressive models, denoted as NNAR(p, P, k);, where p is the number of
non-seasonal lags, P is the number of seasonal lags (i.e., multiples of the seasonal period
s), and k is the number of neurons in the hidden layer. In this context, the model
incorporates both recent and seasonal past observations as inputs:

Ye = f(yt—lz s Yt—p Yt—s, - -/yt—Ps) + €.
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Input Hidden Output
layer layer layer

Figure 2.1: Architecture of the feedforward neural network model NNAR(5,4). The model
includes 5 input neurons corresponding to lagged values, 4 neurons in the hidden layer with
sigmoid activation, and 1 output neuron with linear activation.

This extension allows the network to effectively capture both short-term dependencies
and recurring seasonal patterns in the data. The nnetar() function in R automatically
detects and incorporates seasonality when the input time series exhibits periodic struc-
ture, making the seasonal NNAR model well-suited for monthly or quarterly data.

2.3 Performance metrics

To assess forecasting accuracy, we use the following standard performance metrics. Let y;
denote the actual value, ; the forecasted value at time ¢, and n the number of forecasts in the
test set.

e Mean Error (ME):

1 n
ME =~ Y (v — ).

t=1
* Root Mean Square Error (RMSE):

n

Y (ye — 90)%

t=1

RMSE =

S| =
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e Mean Absolute Error (MAE):
1 n
MAE = —Z]yt—yt|.
ni3

* Mean Absolute Percentage Error (MAPE):

mapE = 120y

t=1

yt—ﬁt

Yt

These metrics were computed on the test datasets to evaluate out-of-sample performance.
Comparisons between SARIMA and ANN forecasts were made both numerically and graph-
ically to assess consistency across different types of data and forecasting horizons.

While confidence intervals are displayed for some forecasts, simulation plots are used in
others to illustrate the range of possible trajectories generated by the NNAR model. This
choice was intentional to highlight different aspects of model behavior interval uncertainty in
some cases, and dynamic simulation capacity in others.

3 Results and discussion

3.1 Forecasting GDP series

We begin our analysis with the fitted neural network model applied to the training dataset.
The model used is a NNAR(4,5), which corresponds to a feedforward neural network with
4 input neurons (representing the last 4 lagged observations), 5 neurons in the hidden layer,
and 1 output neuron for forecasting.

The model was constructed as an average of 20 independently trained networks. Each
individual network follows a 4-5-1 architecture and involves a total of 31 trainable weights
(including biases). The residual variance 6 is estimated to be 0.0063, indicating a relatively
low level of unexplained variation in the training data, which suggests a good fit of the model.
This model will now serve as the basis for forecasting and simulation.

The performance of both NNAR(4,5) and ARIMA(1,1,1) models was evaluated using the
GDP time series. Table 3.1 presents the error metrics for both training and test sets. The NNAR
model demonstrated superior performance across most accuracy measures. For the training
set, the NNAR model yielded a significantly lower Root Mean Square Error (RMSE) of 0.0799
compared to 0.1289 for the ARIMA model. It also achieved lower Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE), indicating more precise and reliable forecasts.
The Mean Error (ME) was nearly zero for NNAR, reflecting unbiased predictions, whereas
the ARIMA model exhibited a slight positive bias.

On the test set, the NNAR model continued to outperform the ARIMA model. The RMSE
and MAE for NNAR were 0.1246 and 0.1043, respectively, both of which are lower than those
of ARIMA (0.2306 and 0.1736). Furthermore, the MAPE dropped to 1.95% for NNAR versus
3.23% for ARIMA, showing the robustness of the NNAR model in handling out-of-sample
forecasts. The consistent reduction in all error metrics confirms the effectiveness of the NNAR
model in modeling the nonlinear dynamics of Algeria’s GDP series.

Figure 3.1 illustrates a graphical comparison between actual GDP values and the forecasts
produced by the NNAR and ARIMA models. The actual series exhibits both upward and
downward movements, reflecting the inherent nonlinear dynamics and structural changes
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Table 3.1: Forecast accuracy measures for GDP time series

Model Set ME RMSE | MAE | MAPE

Training | -0.0003 | 0.0799 | 0.0605 | 1.6883

NNAR Test 0.0711 | 0.1246 | 0.1043 | 1.9591
Training | 0.0191 | 0.1289 | 0.0953 | 3.9419

ARIMA Test 0.1734 | 0.2306 | 0.1736 | 3.2351

within the economic data. The NNAR model captures the underlying trend of the series more
accurately, particularly during the post-2020 period where the actual GDP shows a sharp
increase. In contrast, the ARIMA model fails to adapt to the sudden rise, continuing a smooth
downward trend that underestimates the actual GDP trajectory.

Forecast Comparison: Neural Network vs ARIMA

n
n

n
P

n
)

Values

i
p]

tn
-y

tn

.0

2017

Lr

2020.0
Time

series
— Actual

— NeuralNet

— ARIMA

Figure 3.1: Forecast comparison of Algeria’s GDP: NNAR vs ARIMA.

This visual evidence reinforces the results obtained from the error metrics. The consistent
divergence of the ARIMA model from the real data after 2019 highlights its limitations in cap-
turing nonlinearity, making it less suitable for GDP series characterized by structural breaks



298 K. Djaber and M. Merzougui

or regime shifts.

Figure 3.2 shows residual analysis of the ARIMA(1,1,1) model. The residuals were first
plotted along with their ACF to visually check for any remaining autocorrelation. The ACF
plots of residuals fall within the 95% confidence intervals, indicating no significant autocor-
relation. Furthermore, we performed the Box Ljung test to formally assess the independence
of residuals, and the Jarque Bera test to examine their normality. The Box Ljung test gives
p-value = 0.7009, and for the Jarque Bera test, the p-value was 0.0629. Thus, at the 5% signif-
icance level, we fail to reject the null hypothesis of normality, but at the 10% level, we reject
it.

Residuals from ARIMA(1,1,1)
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Figure 3.2: SARIMA model diagnostics for Algeria’s GDP series. (Top) Residuals plot show-
ing no apparent patterns. (Middle) ACF of residuals with 95% confidence bands. (Bottom)
Histogram of residuals with normal distribution overlay.

To explore potential future scenarios, we simulated nine possible future paths using the
fitted NNAR(4,5) model based on the entire dataset. As shown in Figure 3.3, the black curve
depicts the historical evolution of the logarithm of the observed time series, while the colored
lines represent the simulated trajectories.

The superior performance of the NNAR model may be attributed to its ability to capture
nonlinear patterns and structural breaks in the Algerian economy, especially after 2020, when
oil price shocks and fiscal reforms significantly altered the dynamics of GDP growth. Unlike
the linear SARIMA model, the NNAR approach adapts more flexibly to these abrupt regime
shifts.
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Figure 3.3: Forecasting simulations from the fitted NNAR(4,5) model for Algeria’s GDP. The
black line shows historical log-transformed GDP data, while colored lines represent nine sim-
ulated future trajectories with prediction intervals.

3.2 Temperature forecasting results

The selected model for the temperature time series is a NNAR(11,1,10)[12], comprising an
ensemble average of 20 neural networks. Each network follows a 12-10-1 architecture, with 12
input nodes (11 lagged values plus one seasonal lag at period 12, capturing both short-term
and seasonal dependencies), 10 hidden nodes, and one output node. Each network contains
141 trainable weights. The relatively low estimated noise variance (6% = 0.0006) suggests a
strong in sample fit.

Table 3.2 summarizes the performance metrics of the NNAR(11,1,10)[12] and SARIMA(1,0,0)-
(0,1,1)[12] models. The NNAR model outperforms SARIMA on both training and test sets. It
yields lower errors across all metrics, indicating better fit and more accurate forecasts. This
highlights the superior ability of the NNAR model to capture the underlying patterns of the
series.

Figure 3.4 presents the forecast comparison between the NNAR model and the SARIMA
model for the temperature time series. Both models accurately capture the seasonal behavior
and the overall trend of the data. The Neural Network model follows the actual observations
slightly more closely, especially during the phases of rapid temperature increase and decrease.
SARIMA also performs well but shows small deviations, particularly at the beginning.

Figure 3.5 presents the residual analysis of the SARIMA model. The Box Ljung test yields a
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Table 3.2: Performance metrics for temperature forecasting using NNAR and SARIMA models

Model Set ME | RMSE | MAE | MAPE
NNAR Training | 0.0001 | 0.0254 | 0.0192 | 0.6590
Test 0.0285 | 0.0436 | 0.0300 | 1.0579
SARIMA | Training | 0.0074 | 0.0393 | 0.0281 | 0.9671
Test 0.0299 | 0.0463 | 0.0320 | 1.1220

Forecast Comparison: Neural Network vs SARIMA
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Figure 3.4: Forecast comparison between NNAR and SARIMA models for Algeria’s monthly
average temperature.

p-value of 0.9324, suggesting no significant autocorrelation in the residuals. However, the Jar-
que Bera test indicates strong evidence of non-normality (p-value < 2.2 x 10716), supporting
the presence of nonlinearity in the data.

Figure 3.6 displays nine simulated trajectories generated from the NNAR(11,1,10)[12] model
fitted to the full dataset.

The stronger NNAR performance for temperature data likely reflects underlying climatic
nonlinearities influenced by regional and global drivers, which are better captured by neural
networks than by linear models.
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Residuals from ARIMA(1,0,0)(0,1,1)[12]
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Figure 3.5: SARIMA model diagnostics for Algeria’s temperature series. (Top) Residuals plot.
(Middle) ACF of residuals with 95% confidence bands. (Bottom) Histogram of residuals with
normal distribution overlay.
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Figure 3.6: Forecasting simulations from the fitted NNAR(11,1,10)[12] model for Algeria’s
temperature. The black line shows historical temperature data, while colored lines represent
nine simulated future trajectories with prediction intervals.

3.3 Forecasting USD/DZD exchange rate

The third application focuses on modeling the daily USD/DZD exchange rate from January
1, 2022 to January 1, 2024 (approximately 5 observations per week, excluding weekends).
The selected model was a NNAR(27,1,5)[5], indicating the use of 27 non-seasonal lags and 1
seasonal lag (with a seasonal period of 5, corresponding to weekly seasonality), and a hid-
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den layer comprising 5 neurons. The model was trained as the average of 20 independently
initialized feedforward networks, each having a 27-5-1 structure and a total of 146 weights.

The estimated noise variance was 6> = 3.31 x 10°, suggesting a tight fit to the training
data. The relatively large number of input lags allows the model to capture the potentially
long-memory behavior and complex nonlinear dynamics typical of exchange rate series. The
inclusion of weekly seasonality is particularly relevant in financial time series, where cyclical
effects may appear due to trading behavior and institutional activity concentrated during
business days.

Table 3.3 summarizes the obtained results. The NNAR model clearly outperforms the
SARIMA(2,1,0)(1,0,1)[5] model on both training and test sets: Training performance is better
for NNAR, with significantly lower RMSE and MAPE. The lower ME values suggest negligible
bias for both models, but the smaller RMSE and MAE for NNAR on the test set confirm better
generalization.

Table 3.3: Performance comparison between NNAR and ARIMA models on the USD/DZD
exchange rate series.

Model Set ME | RMSE | MAE | MAPE
NNAR Training | —2.20 x 107¢ | 0.0018 | 0.0013 | 0.0270
Test 8.76 x 10~° | 0.0057 | 0.0048 | 0.0995
SARIMA | Training | —4.82 x 107% | 0.0026 | 0.0019 | 0.0396
Test —1.59 x 102 | 0.0195 | 0.0164 | 0.3353

Figure 3.7 displays the forecast comparison between the actual USD/DZD values and the
forecasts obtained from the NNAR and SARIMA models. It can be observed that the NNAR
model follows the downward trend of the actual series more closely than the SARIMA model,
which remains almost flat and fails to capture the dynamic changes. This graphical evidence
supports the numerical results, confirming the superior forecasting performance of the NNAR
model for this exchange rate series.

The residual plots do not display any visible patterns, suggesting no major model mis-
specification (Figure 3.8). The p-value of the Box Ljung test is 0.6048, confirming the null
hypothesis of independence. Therefore, the fitted SARIMA model appears to be adequate for
the data under study. As financial data, the p-value of the Jarque Bera test is < 2.2 x 1071,
confirming significant deviation from normality.

Figure 3.9 presents forecasts with prediction intervals generated by the NNAR(27,1,5)[5]
model fitted to the complete dataset.

The poor performance of SARIMA for the USD/DZD exchange rate likely reflects the
nonlinear and heteroskedastic nature of financial data. While models such as GARCH, RNN,
or LSTM could better accommodate these dynamics, the present study focuses on comparing
NNAR and SARIMA under a common framework, leaving the exploration of volatility-based
or deep learning extensions for future work.

4 Conclusion

This study evaluated the forecasting performance of the Neural Network Autoregressive
(NNAR) model in comparison with the classical SARIMA model. Using real-world Alge-
rian datasets, the NNAR model consistently delivered more accurate forecasts, especially in
contexts involving nonlinear patterns and complex dynamics.
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Forecast Comparison: Neural Network vs SARIMA
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Figure 3.7: Forecast comparison between NNAR and SARIMA models for the USD/DZD
exchange rate.

The results confirm the flexibility and robustness of NNAR in modeling time series data,
making it a strong alternative to SARIMA. Its ability to adapt to nonlinearity and irregular
structures enhances its predictive performance, particularly for financial and economic data.

Future research will aim to extend this work by exploring more advanced neural network
architectures such as RNNs and LSTM networks. In addition, hybrid models that combine
the strengths of neural networks and traditional models may offer even greater accuracy and
reliability for forecasting.
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Residuals from ARIMA(2,1,0)(1,0,1)[5]
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Forecasts from NNAR(27,1,9)[5]
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Figure 3.9: Forecasts from the fitted NNAR(27,1,5)[5] model for USD/DZD exchange rate. The
black line shows historical exchange rate data, while the blue line represents point forecasts
with 80% and 95% prediction intervals shown in shaded bands.
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This appendix provides supplementary material supporting the empirical analysis, including
visual diagnostics of non-stationarity for the three Algerian time series, forecast accuracy
comparison through Theil’s U statistic, and the architecture of the fitted NNAR model.
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Figure .1: Time series analysis of Algeria’s GDP from 1960 to 2023. (Top row) Raw GDP data
and log-transformed series. (Middle row) First-differenced log GDP series. (Bottom row) ACF

and PACF plots of the differenced series.
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Table .1: Theil’s U statistic for the three Algerian time series

Series NNAR SARIMA Interpretation

GDP (log) 0.9649 2.2142 NNAR vyields a lower Theil’s U,
indicating more accurate and con-
sistent forecasts than SARIMA.

Exchange rate (USD/DZD, log) 2.9369 9.7234  Both models exhibit limited ac-
curacy, but NNAR still performs
better, with substantially lower
forecast error proportionality.

Temperature (log) 0.1779 0.2107 Both models perform well, yet

NNAR  slightly  outperforms
SARIMA, showing improved
short-term predictive accuracy.
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Figure .2: Time series analysis of the USD/DZD exchange
01/01/2024. (Top row) Raw exchange rate data and log-transformed series. (Middle row)
First-differenced log exchange rate series. (Bottom row) ACF and PACF plots of the differ-

enced series.
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Figure .3: Time series analysis of monthly temperature in Algeria from 01/1991 to 12/2016.
(Top row) Raw temperature data showing seasonal patterns. (Middle row) Seasonally differ-
enced temperature series. (Bottom row) ACF and PACF plots of the seasonally differenced
series.
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Architecture of NNAR(4,5) Model _GDP
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Figure .4: Architecture of the NNAR(4,5) model fitted to Algeria’s GDP. The model includes
four input neurons corresponding to four lagged values of the log-transformed GDP, five
neurons in the hidden layer, and one output neuron. The thickness of the connections reflects
the relative weight magnitudes, as visualized by the NeuralNetTools package in R.
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